5.2. Нахождение ранга матрицы методом окаймления миноров
Один из методов методом нахождения ранга матрицы является метод перебора миноров. Этот способ основан на определении ранга матрицы. Суть метода в следующем. Если есть хотя бы один элемент матрицы размерности m n, отличный от нуля, то ранг матрицы как минимум равен единице (так как есть минор первого порядка, не равный нулю). Далее перебираем миноры второго порядка. Если все миноры второго порядка равны нулю, то ранг матрицы равен единице. Если существует хотя бы один ненулевой минор второго порядка, то переходим к перебору миноров третьего порядка, а ранг матрицы как минимум равен двум. Аналогично, если все миноры третьего порядка равны нулю, то ранг матрицы равен двум. Если существует хотя бы один минор третьего порядка, отличный от нуля, то ранг матрицы как минимум равен трем, и преступаем к перебору миноров четвертого порядка. И так далее.
Следует учесть, что ранг матрицы не может превышать наименьшего из чисел m и n.
Опишем более рациональный метод нахождения ранга матрицы – это метод окаймляющих миноров.
Определение 5.3. Минор М (k + 1)-ого порядка матрицы А окаймляет минор M порядка k матрицы А, если матрица, соответствующая минору М, «содержит» матрицу, соответствующую минору M.
Другими словами, матрица, соответствующая окаймляемому минору М, получается из матрицы, соответствующей окаймляющему минору M, вычеркиванием элементов одной строки и одного столбца.
Теорема 5.1. Если в матрице А имеется минор М порядка r, отличный от нуля, а все миноры матрицы А, окаймляющие минор М (если они существуют) равны нулю, то ранг матрицы А равен r.
Замечание 5.2. Данную теорему можно переформулировать иначе. Если все миноры, окаймляющие минор k-ого порядка матрицы А размерности m n, равны нулю, то все миноры порядка (k + 1) матрицы А равны нулю.
Таким образом, для нахождения ранга матрицы не обязательно перебирать все миноры, достаточно окаймляющих. Количество миноров, окаймляющих минор k-ого порядка матрицы А размерности m n, находится по формуле (m – k)(n – k). Отметим, что миноров, окаймляющих минор k-ого порядка матрицы А, не больше, чем миноров (k + 1)-ого порядка матрицы А. Поэтому, в большинстве случаев использование метода окаймляющих миноров выгоднее простого перебора всех миноров.
Опишем алгоритм данного метода.
Если матрица А ненулевая, то в качестве минора первого порядка берем любой элемент матрицы А, отличный от нуля. Рассматриваем его окаймляющие миноры. Если все они равны нулю, то ранг матрицы равен единице. Если же есть хотя бы один ненулевой окаймляющий минор (его порядок равен двум), то переходим к рассмотрению его окаймляющих миноров. Если все они равны нулю, то rang A = 2. Если хотя бы один окаймляющий минор отличен от нуля (его порядок равен трем), то рассматриваем его окаймляющие миноры. И так далее. В итоге rang A =k, если все окаймляющие миноры (k + 1)-ого порядка матрицы А равны нулю, либо rang A = min(m, n), если существует ненулевой минор, окаймляющий минор порядка (min(m, n) – 1).
Пример 5.2. Найти ранг матрицы A = методом окаймляющих миноров.
Решение. В этой матрице есть ненулевые элементы, значит ее ранг больше нуля. Так как элемент а11 = 3 матрицы А отличен от нуля, то возьмем его в качестве минора первого порядка. Начнем поиск окаймляющего минора, отличного от нуля: = 14 ≠ 0.
Находим миноры третьего порядка, окаймляющие данный (их (3 – 2)(4 – 2) = 2 штуки) = 0, = 0. Все они равны нулю, следовательно ранг матрицы А равен двум, rang A = 2.
Yandex.RTB R-A-252273-3
- Т. Н. Матыцина е. К. Коржевина линейная алгебра
- Оглавление
- Введение
- 1. Множества
- 1.1. Множества и их элементы. Способы задания множеств
- 1.2. Подмножества. Диаграммы Эйлера – Венна
- 1.3. Операции над множествами и их свойства
- 1. Объединение (или сумма).
- 2. Пересечение (или произведение).
- 3. Разность.
- 4. Декартовое произведение (или прямое произведение).
- Свойства операций над множествами
- 1.4. Метод математической индукции
- 1.5. Комплексные числа
- Операции над комплексными числами
- Геометрическая интерпретация комплексных чисел
- Тригонометрическая форма комплексного числа
- Действия над комплексными числами в тригонометрической форме
- 3. Возведение в степень.
- 4. Извлечение корня n-ой степени.
- Показательная форма комплексного числа
- 2. Бинарные отношения
- 2.1. Понятие отношения
- Способы задания бинарных отношений
- Операции над бинарными отношениями
- 2.2. Свойства бинарных отношений
- 2.3. Отношение эквивалентности
- 2.4. Функции
- 3. Матрицы и действия над ними
- 3.1. Общие понятия
- 3.2. Основные операции над матрицами и их свойства
- 3.2.1. Сложение однотипных матриц
- 3.2.2. Умножение матрицы на число
- 3.2.3. Умножение матриц
- 3.3. Транспонирование матриц
- 4. Определители квадратных матриц
- 4.1. Определители матриц второго и третьего порядка
- 4.2. Определитель матрицы n-го порядка
- 4.3. Свойства определителей
- 4.4. Практическое вычисление определителей
- 5. Ранг матрицы. Обратная матрица
- 5.1. Понятие ранга матрицы
- 5.2. Нахождение ранга матрицы методом окаймления миноров
- 5.3. Нахождение ранга матрицы с помощью элементарных преобразований
- 5.4. Понятие обратной матрицы и способы ее нахождения
- Алгоритм нахождения обратной матрицы
- Нахождение обратной матрицы с помощью элементарных преобразований
- 6. Системы линейных уравнений
- 6.1. Основные понятия и определения
- 6.2. Методы решения систем линейных уравнений
- 6.2.1. Метод Крамера
- 6.2.2. Метод обратной матрицы
- 6.2.3. Метод Гаусса
- Описание метода Гаусса
- 6.3. Исследование системы линейных уравнений
- 6.4. Однородные системы линейных уравнений
- Свойства решений однородной системы линейных уравнений
- Фундаментальный набор решений однородной системы линейных уравнений
- 7. Арифметическое n-мерное векторное пространство
- 7.1. Основные понятия
- 7.2. Линейная зависимость и независимость системы векторов
- Свойства линейной зависимости системы векторов
- Единичная система векторов
- Две теоремы о линейной зависимости
- 7.3. Базис и ранг системы векторов
- Базис пространства Rn
- Ранг системы векторов
- 8. Векторные (линейные) пространства
- 8.1. Определение векторного пространства над произвольным полем.
- Простейшие свойства векторных пространств
- Линейная зависимость и независимость системы векторов
- 8.2. Подпространства. Линейные многообразия
- Пересечение и сумма подпространств
- Линейные многообразия
- 8.3. Базис и размерность векторного пространства
- 8.3.1. Конечномерные векторные пространства
- Базис конечномерного векторного пространства
- 8.3.2. Базисы и размерности подпространств
- 8.3.3. Координаты вектора относительно данного базиса
- 8.3.4. Координаты вектора в различных базисах
- 8.4 Евклидовы векторные пространства
- Скалярное произведение в координатах
- Метрические понятия
- Процесс ортогонализации
- Скалярное произведение в ортонормированном базисе
- Ортогональное дополнение подпространства
- 9. Линейные операторы
- 9.1. Основные понятия и способы задания линейных операторов
- Способы задания линейных операторов
- 9.2. Матрица линейного оператора Связь между координатами вектора и координатами его образа
- Матрицы линейного оператора в различных базисах
- 9.3. Подобные матрицы
- Свойства отношения подобия матриц
- 9.4. Действия над линейными операторами
- 1. Сложение линейных операторов.
- Свойства сложения линейных операторов
- 9.5. Ядро и образ линейного оператора
- 9.6. Обратимые линейные операторы
- 9.7. Собственные векторы линейного оператора
- 9.7.1. Свойства собственных векторов
- 9.7.2. Характеристический многочлен матрицы
- 9.7.3. Нахождение собственных векторов линейного оператора
- 9.7.4. Алгоритм нахождения собственных векторов линейного оператора
- 9.7.5.Условия, при которых матрица подобна диагональной матрице
- 10. Жорданова нормальная форма матрицы линейного оператора
- 10.1. Понятие λ-матрицы
- Свойства λ-матрицы
- 10.2. Жорданова нормальная форма
- 10.3.Приведение матрицы к жордановой (нормальной) форме
- Алгоритм приведения матрицы a к жордановой форме
- 11. Билинейные и квадратичные формы
- 11.1. Билинейные формы
- Свойства билинейных форм
- Преобразование матрицы билинейной формы при переходе к новому базису. Ранг билинейной формы
- 11.2. Квадратичные формы
- Приведение квадратичной формы к каноническому виду
- Закон инерции квадратичных форм
- Классификация квадратичных форм
- Необходимое и достаточное условие знакоопределенности квадратичной формы
- Необходимое и достаточное условие знакопеременности квадратичной формы
- Необходимое и достаточное условие квазизнакопеременности квадратичной формы
- Критерий Сильвестра знакоопределенности квадратичной формы
- Заключение
- Библиографический список
- Линейная алгебра
- 156961, Г. Кострома, ул. 1 Мая, 14