logo
Линейная Алгебра от 2 октября 2013

Описание метода Гаусса

Метод Гаусса – метод последовательного исключения неизвестных – заключается в том, что с помощью элементарных преобразований исходная система приводится к равносильной ей системе ступенчатого или треугольного вида, из которой последовательно, начиная с последних (по номеру), неизвестных находятся все остальные неизвестные. Дана система (1)

(1)

Начинаем осуществлять прямой ход. Считаем, что коэффициент а11 ≠ 0; если же это не так, меняем местами уравнения.

Первый шаг состоит в том, чтобы исключить неизвестное х1 из всех уравнений, кроме первого. Для этого ко второму уравнению прибавим первое уравнение, умноженное на число , к третьему уравнению прибавим первое уравнение, умноженное на число , и так далее до последнего уравнения. После первого шага получим систему:

Полученная система равносильна исходной системе.

Вторым шагом исключают неизвестное из всех уравнений, кроме первого и второго. Для этого повторяем все действия первого шага для второго и последующих уравнений, а именно: считаем, что коэффициент  ≠ 0 и так далее. Если в результате преобразований получается нулевое уравнение, то его удаляют, если же получается несовместное уравнение, то решение системы закончено – она несовместна. Процесс исключения неизвестных продолжаем до тех пор, пока это возможно. Обозначим количество уравнений, оставшихся после прямого хода, через r. Это число равно рангу основной матрицы системы и может быть меньше или равно n. Рассмотрим оба случая.

1) Если r = n, то система после прямого хода принимает вид:

где с11 ≠ 0, с22 ≠ 0, …, сnn ≠ 0.

Обратным ходом, начиная с последнего уравнения, последовательно найдем значения xn, (где xn = ), xn – 1, ..., x1. В этом случае система линейных уравнений имеет единственное решение, то есть является определенной.

2) Если r < n, то система после прямого хода принимает вид:

где с11 ≠ 0, с22 ≠ 0, …, сrr ≠ 0. Неизвестные x1, x2, …, xr, с которых начинаются уравнения, называются главными неизвестными, а остальные xr + 1, x r + 2, …, xnсвободными. В этом случае обратным ходом, начиная с последнего уравнения, выражают главные неизвестные через свободные неизвестные. Получают следующие равенства:

x1 = k1,r + 1xr + 1 + … + k1,nxn + t1,

x2 = k2,r + 1xr + 1 + … + k2,nxn + t2,

……………………………………..

xr = kr,r + 1xr + 1 + … + kr,nxn + tr.

Определение 6.10. Общим решением системы называется выражение главных неизвестных через свободные.

Если свободным неизвестным придать какие-нибудь числовые значения, то из общего решения получим значения главных неизвестных. Таким образом, получают частное решение системы. Из способа его получения следует, что система имеет более одного решения, то есть является неопределенной.

Пример 6.3. Решить методом Гаусса систему линейных уравнений:

Решение. Преобразования с системой линейных удобнее производить не с самими уравнениями, а с матрицей их коэффициентов. Расширенная матрица этой системы имеет вид: (А|B) = .

Осуществляем прямой ход. Первым шагом исключаем неизвестное х1 из всех уравнений, кроме первого. Так как а11 = 1 ≠ 0, то переставлять уравнения местами не нужно. Прибавим ко второму уравнению системы первое уравнение, умноженное на (–1), к третьему уравнению – первое, умноженное на (–3). Получим после преобразований следующую матрицу: , в которой элемент а22 = 1. Перестановка местами уравнений (первое уравнение трогать не следует) не поможет, поэтому переходим к следующему неизвестному х3 и исключаем его из всех уравнений, кроме первого и второго. Для этого к третьему уравнению прибавим второе, умноженное на (–2) и вычеркнем получившееся нулевое уравнение. После прямого хода получаем следующую систему: . Прямой ход завершен. В этом случае n = 4, r = 2, r < n, и, следовательно, система неопределенная. Главные неизвестные – это те неизвестные, с которых начинаются уравнения, в нашем случае это х1 и х3. Неизвестные х2 и х4 – свободные.

Обратным ходом надо выразить главные неизвестные через свободные. Для этого в столбцах, содержащих ведущие элементы строк, следует получить нули. Здесь это элемент а13. Прибавим к первому уравнению, умноженному на 2, второе и выпишем получившуюся матрицу коэффициентов: , а затем и сами уравнения: Из этих уравнений получаем общее решение:

Найдем какое-нибудь частное решение; пусть х2 = 3, х4 = 1, тогда из общего решения получим значения х1 = , и х1 = –2. Таким образом, частное решение – вектор а = (, 3, –2, 1).

Ответ: общее решение {(, х2, , х4)}, где х2, х4  R;

частное решение, если х2 = 3, х4 = 1, то (, 3, –2, 1).

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4