Описание метода Гаусса
Метод Гаусса – метод последовательного исключения неизвестных – заключается в том, что с помощью элементарных преобразований исходная система приводится к равносильной ей системе ступенчатого или треугольного вида, из которой последовательно, начиная с последних (по номеру), неизвестных находятся все остальные неизвестные. Дана система (1)
(1)
Начинаем осуществлять прямой ход. Считаем, что коэффициент а11 ≠ 0; если же это не так, меняем местами уравнения.
Первый шаг состоит в том, чтобы исключить неизвестное х1 из всех уравнений, кроме первого. Для этого ко второму уравнению прибавим первое уравнение, умноженное на число , к третьему уравнению прибавим первое уравнение, умноженное на число , и так далее до последнего уравнения. После первого шага получим систему:
Полученная система равносильна исходной системе.
Вторым шагом исключают неизвестное из всех уравнений, кроме первого и второго. Для этого повторяем все действия первого шага для второго и последующих уравнений, а именно: считаем, что коэффициент ≠ 0 и так далее. Если в результате преобразований получается нулевое уравнение, то его удаляют, если же получается несовместное уравнение, то решение системы закончено – она несовместна. Процесс исключения неизвестных продолжаем до тех пор, пока это возможно. Обозначим количество уравнений, оставшихся после прямого хода, через r. Это число равно рангу основной матрицы системы и может быть меньше или равно n. Рассмотрим оба случая.
1) Если r = n, то система после прямого хода принимает вид:
где с11 ≠ 0, с22 ≠ 0, …, сnn ≠ 0.
Обратным ходом, начиная с последнего уравнения, последовательно найдем значения xn, (где xn = ), xn – 1, ..., x1. В этом случае система линейных уравнений имеет единственное решение, то есть является определенной.
2) Если r < n, то система после прямого хода принимает вид:
где с11 ≠ 0, с22 ≠ 0, …, сrr ≠ 0. Неизвестные x1, x2, …, xr, с которых начинаются уравнения, называются главными неизвестными, а остальные xr + 1, x r + 2, …, xn – свободными. В этом случае обратным ходом, начиная с последнего уравнения, выражают главные неизвестные через свободные неизвестные. Получают следующие равенства:
x1 = k1,r + 1xr + 1 + … + k1,nxn + t1,
x2 = k2,r + 1xr + 1 + … + k2,nxn + t2,
……………………………………..
xr = kr,r + 1xr + 1 + … + kr,nxn + tr.
Определение 6.10. Общим решением системы называется выражение главных неизвестных через свободные.
Если свободным неизвестным придать какие-нибудь числовые значения, то из общего решения получим значения главных неизвестных. Таким образом, получают частное решение системы. Из способа его получения следует, что система имеет более одного решения, то есть является неопределенной.
Пример 6.3. Решить методом Гаусса систему линейных уравнений:
Решение. Преобразования с системой линейных удобнее производить не с самими уравнениями, а с матрицей их коэффициентов. Расширенная матрица этой системы имеет вид: (А|B) = .
Осуществляем прямой ход. Первым шагом исключаем неизвестное х1 из всех уравнений, кроме первого. Так как а11 = 1 ≠ 0, то переставлять уравнения местами не нужно. Прибавим ко второму уравнению системы первое уравнение, умноженное на (–1), к третьему уравнению – первое, умноженное на (–3). Получим после преобразований следующую матрицу: , в которой элемент а22 = 1. Перестановка местами уравнений (первое уравнение трогать не следует) не поможет, поэтому переходим к следующему неизвестному х3 и исключаем его из всех уравнений, кроме первого и второго. Для этого к третьему уравнению прибавим второе, умноженное на (–2) и вычеркнем получившееся нулевое уравнение. После прямого хода получаем следующую систему: . Прямой ход завершен. В этом случае n = 4, r = 2, r < n, и, следовательно, система неопределенная. Главные неизвестные – это те неизвестные, с которых начинаются уравнения, в нашем случае это х1 и х3. Неизвестные х2 и х4 – свободные.
Обратным ходом надо выразить главные неизвестные через свободные. Для этого в столбцах, содержащих ведущие элементы строк, следует получить нули. Здесь это элемент а13. Прибавим к первому уравнению, умноженному на 2, второе и выпишем получившуюся матрицу коэффициентов: , а затем и сами уравнения: Из этих уравнений получаем общее решение:
Найдем какое-нибудь частное решение; пусть х2 = 3, х4 = 1, тогда из общего решения получим значения х1 = , и х1 = –2. Таким образом, частное решение – вектор а = (, 3, –2, 1).
Ответ: общее решение {(, х2, , х4)}, где х2, х4 R;
частное решение, если х2 = 3, х4 = 1, то (, 3, –2, 1).
Yandex.RTB R-A-252273-3
- Т. Н. Матыцина е. К. Коржевина линейная алгебра
- Оглавление
- Введение
- 1. Множества
- 1.1. Множества и их элементы. Способы задания множеств
- 1.2. Подмножества. Диаграммы Эйлера – Венна
- 1.3. Операции над множествами и их свойства
- 1. Объединение (или сумма).
- 2. Пересечение (или произведение).
- 3. Разность.
- 4. Декартовое произведение (или прямое произведение).
- Свойства операций над множествами
- 1.4. Метод математической индукции
- 1.5. Комплексные числа
- Операции над комплексными числами
- Геометрическая интерпретация комплексных чисел
- Тригонометрическая форма комплексного числа
- Действия над комплексными числами в тригонометрической форме
- 3. Возведение в степень.
- 4. Извлечение корня n-ой степени.
- Показательная форма комплексного числа
- 2. Бинарные отношения
- 2.1. Понятие отношения
- Способы задания бинарных отношений
- Операции над бинарными отношениями
- 2.2. Свойства бинарных отношений
- 2.3. Отношение эквивалентности
- 2.4. Функции
- 3. Матрицы и действия над ними
- 3.1. Общие понятия
- 3.2. Основные операции над матрицами и их свойства
- 3.2.1. Сложение однотипных матриц
- 3.2.2. Умножение матрицы на число
- 3.2.3. Умножение матриц
- 3.3. Транспонирование матриц
- 4. Определители квадратных матриц
- 4.1. Определители матриц второго и третьего порядка
- 4.2. Определитель матрицы n-го порядка
- 4.3. Свойства определителей
- 4.4. Практическое вычисление определителей
- 5. Ранг матрицы. Обратная матрица
- 5.1. Понятие ранга матрицы
- 5.2. Нахождение ранга матрицы методом окаймления миноров
- 5.3. Нахождение ранга матрицы с помощью элементарных преобразований
- 5.4. Понятие обратной матрицы и способы ее нахождения
- Алгоритм нахождения обратной матрицы
- Нахождение обратной матрицы с помощью элементарных преобразований
- 6. Системы линейных уравнений
- 6.1. Основные понятия и определения
- 6.2. Методы решения систем линейных уравнений
- 6.2.1. Метод Крамера
- 6.2.2. Метод обратной матрицы
- 6.2.3. Метод Гаусса
- Описание метода Гаусса
- 6.3. Исследование системы линейных уравнений
- 6.4. Однородные системы линейных уравнений
- Свойства решений однородной системы линейных уравнений
- Фундаментальный набор решений однородной системы линейных уравнений
- 7. Арифметическое n-мерное векторное пространство
- 7.1. Основные понятия
- 7.2. Линейная зависимость и независимость системы векторов
- Свойства линейной зависимости системы векторов
- Единичная система векторов
- Две теоремы о линейной зависимости
- 7.3. Базис и ранг системы векторов
- Базис пространства Rn
- Ранг системы векторов
- 8. Векторные (линейные) пространства
- 8.1. Определение векторного пространства над произвольным полем.
- Простейшие свойства векторных пространств
- Линейная зависимость и независимость системы векторов
- 8.2. Подпространства. Линейные многообразия
- Пересечение и сумма подпространств
- Линейные многообразия
- 8.3. Базис и размерность векторного пространства
- 8.3.1. Конечномерные векторные пространства
- Базис конечномерного векторного пространства
- 8.3.2. Базисы и размерности подпространств
- 8.3.3. Координаты вектора относительно данного базиса
- 8.3.4. Координаты вектора в различных базисах
- 8.4 Евклидовы векторные пространства
- Скалярное произведение в координатах
- Метрические понятия
- Процесс ортогонализации
- Скалярное произведение в ортонормированном базисе
- Ортогональное дополнение подпространства
- 9. Линейные операторы
- 9.1. Основные понятия и способы задания линейных операторов
- Способы задания линейных операторов
- 9.2. Матрица линейного оператора Связь между координатами вектора и координатами его образа
- Матрицы линейного оператора в различных базисах
- 9.3. Подобные матрицы
- Свойства отношения подобия матриц
- 9.4. Действия над линейными операторами
- 1. Сложение линейных операторов.
- Свойства сложения линейных операторов
- 9.5. Ядро и образ линейного оператора
- 9.6. Обратимые линейные операторы
- 9.7. Собственные векторы линейного оператора
- 9.7.1. Свойства собственных векторов
- 9.7.2. Характеристический многочлен матрицы
- 9.7.3. Нахождение собственных векторов линейного оператора
- 9.7.4. Алгоритм нахождения собственных векторов линейного оператора
- 9.7.5.Условия, при которых матрица подобна диагональной матрице
- 10. Жорданова нормальная форма матрицы линейного оператора
- 10.1. Понятие λ-матрицы
- Свойства λ-матрицы
- 10.2. Жорданова нормальная форма
- 10.3.Приведение матрицы к жордановой (нормальной) форме
- Алгоритм приведения матрицы a к жордановой форме
- 11. Билинейные и квадратичные формы
- 11.1. Билинейные формы
- Свойства билинейных форм
- Преобразование матрицы билинейной формы при переходе к новому базису. Ранг билинейной формы
- 11.2. Квадратичные формы
- Приведение квадратичной формы к каноническому виду
- Закон инерции квадратичных форм
- Классификация квадратичных форм
- Необходимое и достаточное условие знакоопределенности квадратичной формы
- Необходимое и достаточное условие знакопеременности квадратичной формы
- Необходимое и достаточное условие квазизнакопеременности квадратичной формы
- Критерий Сильвестра знакоопределенности квадратичной формы
- Заключение
- Библиографический список
- Линейная алгебра
- 156961, Г. Кострома, ул. 1 Мая, 14