5.1. Понятие ранга матрицы
Пусть А – матрица размерности m n. Выберем в этой матрице произвольно k строк и k столбцов, где 1 ≤ k ≤ min(m, n).
Определение 5.1. Минором k-го порядка матрицы А называется определитель матрицы, стоящей на пересечении этих k строк и k столбцов.
Другими словами, если в матрице А размерности m n вычеркнуть (m – k) строк и (n – k) столбцов, а из оставшихся элементов составить матрицу, сохраняя расположение элементов матрицы А , то определитель полученной матрицы есть минор порядка k матрицы А.
Пример 5.1. Проиллюстрируем определение минором k-го порядка матрицы А. Рассмотрим матрицу А = . Запишем минор первого порядка этой матрицы. Например, если выбрать третью строку и второй столбец матрицы А, то данному выбору соответствует минор первого порядка M1 =det(7) = 7 . Иными словами, для получения этого минора надо вычеркнуть первую, вторую и четвертую строки, а также первый и третий столбцы из матрицы А, а из оставшегося элемента составить определитель. Таким образом, минорами первого порядка матрицы являются сами элементы матрицы.
Приведем пример минора второго порядка матрицы А. Выберем две строки, например, первую и вторую, и два столбца, например, первый и третий. Вычислим определитель, стоящий на их пересечении M2 = = –23. Этот минор также можно было составить вычеркиванием из матрицы А третьей и четвертой строки, второго столбца.
Аналогично могут быть найдены миноры третьего порядка матрицы А. Так как в матрице А всего три столбца, то берем их все. Если к этим столбцам добавить три строки, например первую, третью и четвертую, то получим минор третьего порядка M3 = = 145. Данный минор также может быть построен вычеркиванием второй строки матрицы А. Можно получить другой минор третьего порядка, если вычеркивать третью строку матрицы А.
Для данной матрицы А миноров порядка выше третьего не существует, так как k ≤ min(m, n) = min(4, 3) = 3.
Замечание 5.1. Число миноров порядка k матрицы A размерности m n может быть вычислено по формуле: , где и– число сочетаний изm по k и из n по k соответственно.
Определение 5.2. Рангом матрицы называется наибольший из порядков ее миноров, отличных от нуля. Обозначение: rang A, r или r(A).
Из определения следует, что
для матрицы A размерности m n имеем 0 ≤ rang A ≤ min(m, n);
ранг нулевой матрицы равен нулю;
ранг ненулевой матрицы не меньше единицы;
ранг квадратной матрицы порядка n равен n только тогда, когда ее определитель не равен нулю;
ранг матрицы не меняется при транспонировании.
- Т. Н. Матыцина е. К. Коржевина линейная алгебра
- Оглавление
- Введение
- 1. Множества
- 1.1. Множества и их элементы. Способы задания множеств
- 1.2. Подмножества. Диаграммы Эйлера – Венна
- 1.3. Операции над множествами и их свойства
- 1. Объединение (или сумма).
- 2. Пересечение (или произведение).
- 3. Разность.
- 4. Декартовое произведение (или прямое произведение).
- Свойства операций над множествами
- 1.4. Метод математической индукции
- 1.5. Комплексные числа
- Операции над комплексными числами
- Геометрическая интерпретация комплексных чисел
- Тригонометрическая форма комплексного числа
- Действия над комплексными числами в тригонометрической форме
- 3. Возведение в степень.
- 4. Извлечение корня n-ой степени.
- Показательная форма комплексного числа
- 2. Бинарные отношения
- 2.1. Понятие отношения
- Способы задания бинарных отношений
- Операции над бинарными отношениями
- 2.2. Свойства бинарных отношений
- 2.3. Отношение эквивалентности
- 2.4. Функции
- 3. Матрицы и действия над ними
- 3.1. Общие понятия
- 3.2. Основные операции над матрицами и их свойства
- 3.2.1. Сложение однотипных матриц
- 3.2.2. Умножение матрицы на число
- 3.2.3. Умножение матриц
- 3.3. Транспонирование матриц
- 4. Определители квадратных матриц
- 4.1. Определители матриц второго и третьего порядка
- 4.2. Определитель матрицы n-го порядка
- 4.3. Свойства определителей
- 4.4. Практическое вычисление определителей
- 5. Ранг матрицы. Обратная матрица
- 5.1. Понятие ранга матрицы
- 5.2. Нахождение ранга матрицы методом окаймления миноров
- 5.3. Нахождение ранга матрицы с помощью элементарных преобразований
- 5.4. Понятие обратной матрицы и способы ее нахождения
- Алгоритм нахождения обратной матрицы
- Нахождение обратной матрицы с помощью элементарных преобразований
- 6. Системы линейных уравнений
- 6.1. Основные понятия и определения
- 6.2. Методы решения систем линейных уравнений
- 6.2.1. Метод Крамера
- 6.2.2. Метод обратной матрицы
- 6.2.3. Метод Гаусса
- Описание метода Гаусса
- 6.3. Исследование системы линейных уравнений
- 6.4. Однородные системы линейных уравнений
- Свойства решений однородной системы линейных уравнений
- Фундаментальный набор решений однородной системы линейных уравнений
- 7. Арифметическое n-мерное векторное пространство
- 7.1. Основные понятия
- 7.2. Линейная зависимость и независимость системы векторов
- Свойства линейной зависимости системы векторов
- Единичная система векторов
- Две теоремы о линейной зависимости
- 7.3. Базис и ранг системы векторов
- Базис пространства Rn
- Ранг системы векторов
- 8. Векторные (линейные) пространства
- 8.1. Определение векторного пространства над произвольным полем.
- Простейшие свойства векторных пространств
- Линейная зависимость и независимость системы векторов
- 8.2. Подпространства. Линейные многообразия
- Пересечение и сумма подпространств
- Линейные многообразия
- 8.3. Базис и размерность векторного пространства
- 8.3.1. Конечномерные векторные пространства
- Базис конечномерного векторного пространства
- 8.3.2. Базисы и размерности подпространств
- 8.3.3. Координаты вектора относительно данного базиса
- 8.3.4. Координаты вектора в различных базисах
- 8.4 Евклидовы векторные пространства
- Скалярное произведение в координатах
- Метрические понятия
- Процесс ортогонализации
- Скалярное произведение в ортонормированном базисе
- Ортогональное дополнение подпространства
- 9. Линейные операторы
- 9.1. Основные понятия и способы задания линейных операторов
- Способы задания линейных операторов
- 9.2. Матрица линейного оператора Связь между координатами вектора и координатами его образа
- Матрицы линейного оператора в различных базисах
- 9.3. Подобные матрицы
- Свойства отношения подобия матриц
- 9.4. Действия над линейными операторами
- 1. Сложение линейных операторов.
- Свойства сложения линейных операторов
- 9.5. Ядро и образ линейного оператора
- 9.6. Обратимые линейные операторы
- 9.7. Собственные векторы линейного оператора
- 9.7.1. Свойства собственных векторов
- 9.7.2. Характеристический многочлен матрицы
- 9.7.3. Нахождение собственных векторов линейного оператора
- 9.7.4. Алгоритм нахождения собственных векторов линейного оператора
- 9.7.5.Условия, при которых матрица подобна диагональной матрице
- 10. Жорданова нормальная форма матрицы линейного оператора
- 10.1. Понятие λ-матрицы
- Свойства λ-матрицы
- 10.2. Жорданова нормальная форма
- 10.3.Приведение матрицы к жордановой (нормальной) форме
- Алгоритм приведения матрицы a к жордановой форме
- 11. Билинейные и квадратичные формы
- 11.1. Билинейные формы
- Свойства билинейных форм
- Преобразование матрицы билинейной формы при переходе к новому базису. Ранг билинейной формы
- 11.2. Квадратичные формы
- Приведение квадратичной формы к каноническому виду
- Закон инерции квадратичных форм
- Классификация квадратичных форм
- Необходимое и достаточное условие знакоопределенности квадратичной формы
- Необходимое и достаточное условие знакопеременности квадратичной формы
- Необходимое и достаточное условие квазизнакопеременности квадратичной формы
- Критерий Сильвестра знакоопределенности квадратичной формы
- Заключение
- Библиографический список
- Линейная алгебра
- 156961, Г. Кострома, ул. 1 Мая, 14