logo search
Лекції з матем - заоч

1. Задача розширення поняття про число. Необхідність розширення множини натуральних чисел.

1. Розглянувши три теорії цілих невід’ємних чисел, можна твердити, що натуральні числа виникли з потреб практики (необхідність проведення лічби) та з потреб математики (для характеристики потужності скінченної множини). Подальший розвиток математики та людства переконливо довів, що натуральних чисел недостатньо ні для потреб практичної діяльності людини, ні для потреб математики. Зокрема, натуральних чисел виявилося недостатньо для вимірювання величин, що змінюються у двох протилежних напрямках (температура, тиск тощо), а також для розв’язування рівнянь виду а+х=b, наприклад 14+х=9. Також натуральних чисел виявилося недостатньо для виконання дій віднімання, наприклад 8-12, та ділення, наприклад, 12:5. Саме тому постає завдання розширити множину натуральних чисел.

У чому ж сутність задачі розширення поняття числа? – по-перше, до старої числової системи слід приєднати числа, яких не було в ній; по-друге, поширити основні операції старої числової системи на нові числа; по-третє, поширити основні властивості операцій над числами старої числової системи на нові числа; по-четверте, досягти виконуваності якоїсь операції, яка у попередній числовій системі виконувалася не завжди. Враховуючи сказане, можна розкрити сутність задачі розширення множини натуральних чисел. У першу чергу до множини натуральних чисел приєднаємо число нуль та числа, протилежні натуральним. По-друге слід сформулювати означення операцій над такими числами так, щоб вони не суперечили раніше прийнятим означенням операцій додавання, віднімання, множення і ділення. Потім необхідно поширити властивості комутативності, асоціативності та дистрибутивності на числа, протилежні натуральним, тобто на від’ємні числа. І, нарешті, добитися виконуваності операції віднімання для будь-яких чисел нової числової системи.