logo
Лекції з матем - заоч

5. Основна теорема арифметики цілих невід’ємних чисел.

5. Основну теорему арифметики називають також теоремою про існування та єдиність розкладу будь-якого натурального числа на добуток простих множників. Ця теорема використовувалась ще у стародавній Греції, але була сформульована і доведена видатним німецьким математиком К.Гауссом у 1801 році.

Теорема: будь-яке, більше за одиницю, натуральне число а, або просте, або може бути однозначно розкладене в добуток простих чисел з точністю до порядку розміщення співмножників.

Доведення: доведення складається з двох частин. У першій частині доведемо існування такого розкладу. Якщо аєN і a>1, то можливі два випадки : а) число а – просте, тоді розклад існує; б) число а – складене, тоді воно має найменший простий дільник. Нехай це буде число р1. Виходячи із цього, маємо а р1 і а=р1b, де N, причому число 1р1 b.

Ч исло b може бути або простим, або складеним. Якщо число b – просте, то ми вже можемо представити число а у вигляді добутку двох простих чисел рb, тобто розклад існує. Якщо b – складене число, то воно має простий дільник. Нехай це буде число р2. Виходячи із цього, маємо а р2 і а=р1р2с, де сєN, причому число 1р2с. Отже, а=р1р2с. Знову число с може бути або простим, або складеним. Якщо число с – просте, то число а буде представлятися у вигляді добутку трьох простих чисел. Якщо число c – складене, то ми одержимо ще один простий дільник р3. Оскільки с bа, то цей процес завжди буде закінчуватися, а тому завжди буде існувати розклад числа а у вигляді добутку простих множників (І).

Не виключеним є випадок, коли деякий із множників в розкладі (1) повторюється, а тому в загальному випадку розклад числа на прості множники записують так: (ІІ). Розклад (ІІ) називається канонічним розкладом натурального числа а у добуток простих множників. В цьому розкладі р1, р2, р3,...,рk – прості множники, розміщені в порядку зростання; 1, 2, 3,...,k – це натуральні числа, які показують, скільки разів повторюється той чи інший множник. Існування доведено.

У другій частині доведемо єдиність такого розкладу методом від супротивного, припустивши, що існує два різних розклади у вигляді (І), тобто а=р1р2р3рк (ІІ) і а=q1q2q3qn (III). Врахуємо, що р1р2р3рк і q1q2q3qn. У даних розкладах рі і qі – різні, але серед них будуть однакові. Для визначеності припустимо, що p1q1 i p1q1.

Утворимо нове число b=p1q2q3qn (IV). Легко бачити, що число а в записі (1) ділиться націло на p1. Оскільки , то . Використовуючи записи (III) і (IV), винесемо добуток q2q3qn за дужки: (a-b)=(q1–p1)q2q3...qn. Ми показали, що вираз . Оскільки р1 - просте число, то вираз ((q1-p1) q2 q3 qn) p1. Числа q2, q3,…qn - прості і жодне із них не може ділитися на р1. Тоді на p1 повинна ділитися різниця (q1–p1) р1. Разом з тим, оскільки р1 р1, то , бо p1q1 і ці числа прості. Отже, для того, щоб (q1–p1) р1 потрібно, щоб q1-p1=0, тоді q1=p1. Ми прийшли до суперечності із вибором p1 і q1. Ця суперечність говорить, що наше припущення про неєдиність розкладу було хибним. Отже, якщо розклад існує, то він єдиний. Теорема доведена повністю.

Доведена теорема є теоретичною основою представлення будь-якого натурального числа у вигляді добутку простих множників. Покажемо це на прикладі такої вправи: „Представити число 1224 у канонічному розкладі, тобто розкласти в добуток простих множників”.