logo
Лекції з матем - заоч

Малюнок № 6.4.

Якщо в загальному рівнянні прямої визначити у, то при В≠0 загальне рівняння прямої приймає вигляд . Якщо позначити - через , а через , то рівняння приймає вигляд , тобто матиме вигляд рівняння прямої з кутовим коефіцієнтом. Якщо , то рівняння буде мати вигляд Ах+С=0 або х=а, тобто має рівняння прямої, паралельної осі ординат. Якщо А=0, то маємо рівняння Вх+С=0 або у=b, тобто рівняння прямої, паралельної осі абсцис.

Запишемо умови паралельності і перпендикулярності прямих, заданих своїми загальними рівняннями. Нехай маємо дві прямі та . Якщо і , то , . Виходячи із умови паралельності прямих , маємо або –a1b2=-a2b1. Тоді умова паралельності запишеться так: a1b2-a2b1=0. Оскільки умова перпендикулярності прямих має вигляд k1k2=-1, то для прямих, які задані загальними рівняннями прямої, умова перпендикулярності матиме вигляд a1а2+b1b2=0.

Нехай задано дві прямі та . Якщо ці прямі перетинаються, то координати точки перетину задовольняють обидва рівняння, а це означає, що для знаходження точки перетину двох прямих потрібно розв’язати систему рівнянь: . Пропонуємо студентам самостійно розв’язати наступні вправи, використовуючи виведені раніше формули.

Вправа 1: Знайти точку перетину прямих та .

Вправа 2: Як розміщені прямі на площині? та .

Вправа 3: Записати рівняння прямої, яка проходить через точки , .

Вправа 4: Знайти тангенс кута між прямими та .