logo
Лекції з матем - заоч

Малюнок № 3.6. Різниця а-b відрізків.

Операції множення та ділення відрізка на натуральне число визначимо з допомогою наступних означень.

Означення: добутком даного відрізка а на натуральне число n називається сума n-відрізків, кожен із яких дорівнює а.

Означення: діленням даного відрізка а на натуральне число n називається відшукання 1/n частини відрізка а.

Щоб побудувати відрізок, який дорівнює добутку даного відрізка на натуральне число n потрібно на довільній прямій від вибраної точки послідовно відкласти заданий відрізок n разів. Щоб поділити заданий відрізок на n рівних частин, тобто знайти 1/n цього відрізка, слід через один із кінців відрізка а провести промінь під довільним кутом. На промені відкласти довільним розхилом циркуля n однакових відрізків і сполучити кінець n-го відрізка з іншим кінцем даного відрізка і через точки поділу провести паралельні прямі. Графічну сутність цих операцій проілюструємо на наступних малюнках №№ 3.7-3.8.

а а а а

аn

Малюнок № 3.7. Добуток відрізка а на натуральне число n.

а:n

Малюнок № 3.8. Ділення даного відрізка а на натуральне число n ( відрізка а).

Задача вимірювання довжини даного відрізка а зводиться до вибору деякого одиничного відрізка е з наступним порівнянням даного відрізка а з одиничним відрізком е. Вимірюючи довжину даного відрізка за допомогою даного одиничного відрізка е, ми відкладаємо одиничний відрізок е на заданому відрізку а, підраховуємо, скільки разів відрізок е вмістився в заданому відрізку а. Якщо одиниця вимірювання е вкладається ціле число разів у заданому відрізку а, то процес вимірювання закінчено і результат вимірювання записують так: а=е+е+е+...+е=n·е або me(a)=n. В цьому випадку говорять, що натуральне число n є числовим значенням відрізка а при одиниці довжини е. Отже, можна прийняти таке означення.

Означення: якщо відрізок а можна розбити на n відрізків, кожен з яких дорівнює одиничному відрізку е, то число n називають мірою відрізка а чи значенням довжини відрізка а і пишуть n=mе(а).

Виберемо одиничний відрізок е та розглянемо множину всіх таких відрізків, у яких одиничний відрізок вміщується ціле число разів. Розіб’ємо цю множину відрізків на класи, спільною властивістю яких буде: мати однакову міру. Тоді кожне натуральне число буде мірою якогось класу відрізків. Враховуючи сказане, приймемо наступне означення.

Означення: Натуральним числом як результатом вимірювання величини називається числове значення міри величини а при вибраній одиничній мірі е.

Означення: натуральне число n як міра відрізка а показує, із скількох одиничних відрізків е складається відрізок а.

Можна строго математично довести, що для кожного натурального числа існує відрізок, для якого це число є його мірою. Обернене твердження буде хибним. Можна довести, що при вибраній одиниці вимірювання е для будь-якого відрізка а його міра, тобто натуральне число n=mе(а), яке є його мірою, існує і єдине. Зазначимо, якщо за одиничний вибрати інший відрізок, то числове значення довжини відрізка зміниться, наприклад: якщо для даного відрізка довжиною 10 см одиничним вибрати 1 мм, то його мірою буде натуральне число 100; якщо 1 см, то – число 10; якщо 1 дм, то - число 1.

Розглянемо, який же зміст мають відношення “дорівнює”, “менше”, “більше” для натуральних чисел, які є результатом вимірювання довжини відрізка. Нехай нам задано два відрізка а і b. Виберемо одиничний відрізок е і нехай а=nе (або me(a)=n) і b=ke (me(b)=k). Для натуральних чисел, які розглядаються як міра довжини, можна задати відношення рівності та “менше” (“більше”). Якщо відрізки а і b рівні, то рівні і їх числові значення довжини, тобто [а=b][mе(а)=mе(b)n=k]. Якщо відрізок а більший за відрізок b, то і його числове значення довжини mе(а) більше за числове значення mе(b), тобто [аb][me(a)me(b)nk]. Аналогічно, якщо [аb][ me(a)me(b)nk]. Легко переконатися, що відношення “дорівнює” на множині відрізків має властивості рефлективності, симетричності і транзитивності, тобто є відношенням типу еквівалентності, а відношення “менше” є відношенням строгого порядку. Такий взаємозв’язок між відрізками і числовими значеннями їхніх довжин дозволяє зводити порівняння відрізків до порівняння їхніх відповідних числових значень довжини, тобто до порівняння натуральних чисел, і навпаки. Натуральне число можна розглядати теж як результат вимірювання маси, площі, об’єму, вартості, часу тощо.