Малюнок № 1.20. Граф відповідності.
Користуючись малюнком, знайдемо образи і прообрази елементів, які перебувають у відповідності, заданій графом. α(1)={4, 8}, α(2)=Ø, α(3)={2, 4}, α(4)={2, 6, 8}, α(5)={4}, α-1(2)={2, 3, 4}, α-1(4)={2, 4, 5}, α-1(6)= Ø, α-1(8)={1, 4}. Із наведеного прикладу видно, що не всі елементи множини А мають образи у множині В. Так само як і не всі елементи множини В мають прообрази у множині А. враховуючи попереднє зауваження із базових множин А і В можна виділити дві підмножини: 1) підмножину α(А)={в/вєВ і існує таке аєА, що аαв}. Її називають множиною значень відповідності α і позначають α(А)В; 2) підмножину α-1(В)={а/аєА і існує таке вєВ, що аαв}. Цю множину називають областю визначення відповідності α і позначають α-1(В)А. Таким чином, множина значень відповідності α(А) є об’єднанням образів всіх елементів множини А, а область визначення відповідності α-1(В) є об’єднанням прообразів усіх елементів множини В.
2. Типи відповідностей (порожня, повна, всюди визначена у множині відправлення, сюр’єктивна, інє’ктивна, функціональна відповідність або функція, відображення, бієктивна). Обернені функції та відображення.
2. Яке співвідношення може існувати між множинами G і Х×У? – 1) G∩Х×У=Ø; 2) GХ×У; 3) G=Х×У. Виходячи із цих співвідношень можна виділити наступні характерні типи відповідностей:
1) порожня відповідність, при якій G∩Х×У=Ø і α= Ø;
2) повна відповідність, при якій α=Х×У і у графі якої від кожного елемента множини Х йдуть стрілки до кожного елемента множини У;
3) відповідність всюди визначена у множині відправлення Х, тобто така, у якої GХ×У і для якої α-1(У)=Х. Це означає, що всі елементи множини Х мають образи у множині У. На графі такої відповідності із кожного елемента множини Х виходить стрілка до якогось елемента множини У;
4) сюр’єктивна відповідність, тобто відповідність на всю множину прибуття У, причому α(Х)=У. При такій відповідності кожен елемент множини У має прообраз у множині Х. Для графа цієї відповідності характерно те, що із кожного елемента множини Х виходить стрілка і в кожен елемент множини У входить стрілка;
5) інє’ктивна відповідність – це така відповідність αХ×У, у якої прообрази елементів з множини У містять не більше одного елемента з множини Х. На графі такої відповідності в елементи множини У входить не більше однієї (одна або жодної) стрілки;
6) функціональна відповідність або функція, при якій образи елементів з множини Х або порожні, або містять лише один елемент. Граф цієї відповідності характеризується тим, що з кожного елемента множини Х виходить або одна стрілка, або не виходить жодної стрілки, але в елементи множини У може входити більше, ніж одна стрілка;
7) відображення – це всюди визначена функціональна відповідність, коли кожному елементу з множини Х відповідає єдиний елемент у множині У. Такі відповідності, тобто відображення, у свою чергу, поділяють на дві групи: а) відображення множини Х в множину У, коли у множині У є елементи, які не мають прообразів в множині Х. Граф такого відображення характеризується тим, що з всіх елементів множини Х виходять стрілки, але не в кожен елемент множини У входить хоча б одна стрілка; б) відображення множини Х на множину У, коли кожен елемент з множини У має прообраз у множині Х;
8) бієктивна або взаємно однозначна відповідність, яка одночасно всюди визначена, сюр’єктивна, інє’ктивна та функціональна, тобто це ін’єктивне та сюр’єктивне відображення.
У математиці доволі часто доводиться мати справу з оберненими об’єктами (обернені числа, обернені задачі, обернені теореми, обернені функції тощо). Отже, цілком доцільним є введення понять оберненої відповідності та оберненого відображення.
Означення: відповідністю, оберненою до відповідності αХ×У, називається така відповідність α-1, яка є підмножиною декартового добутку множин У×Х і складається з тих і тільки тих пар (у;х), для яких (х;у)єα.
Якщо взяти функціональну відповідність і побудувати для неї обернену, то відповідь на запитання «чи буде одержана відповідність функціональною?» не завжди позитивна.
Означення: відображенням, оберненим до даного відображення f, називається таке відображення f-1, у якого для кожного хєХ і уєУ, якщо f(х)=у, то f-1(у)=х, тобто f-1(f(х))=х.
У математиці доведено теорему, яка дає відповідь на запитання «які відображення мають обернені?».
Теорема: відображення fХ×У має обернене відображення f-1 тоді і тільки тоді, коли відображення f – бієктивне.
Цю теорему приймемо без доведення.
Означення: відображення f називається оборотним, якщо воно має обернене відображення f-1.
3. Бінарні відношення між елементами однієї множини, способи їхнього задання та їх властивості: рефлексивність, антирефлексивність, симетричність, асиметричність, антисиметричність, транзитивність, антитранзитивність.
3. Хоча поняття відповідності та відношення досить близькі, але вони мають суттєві відмінності. Не зупиняючись на цих відмінностях, які не є предметом нашого розгляду, приймемо наступне означення.
Означення: якщо у відповідності f множина відправлення Х співпадає з множиною прибуття У, то таку відповідність будемо називати відношенням між елементами множини Х.
Означення: бінарним відношенням, визначеним у множині Х, називається кожна підмножина декартового квадрату Х×Х=Х2.
Як же можна задавати відношення? – оскільки відношення це відповідність, то його можна задавати тими самими способами, тобто за допомогою переліку, характеристичної властивості, таблиць, графів, графіків, формулою (аналітично). Які ж є типи відношень? – залежно від набору певних властивостей виділяють типи відношень, які ми визначимо за допомогою наступних означень.
Означення: відношення α, визначене у множині Х, називається рефлексивним, якщо кожний елемент множини Х перебуває у відношенні α сам з собою, тобто аαа.
Символічно наведене означення можна записати так: ( хєХ)(аαа). Якщо відношення α рефлексивне, то говорять, що елементи множини Х мають властивість рефлексивності. Прикладами рефлексивних відношень є відношення подільності на множині чисел (а:а), рівності на множині фігур, паралельності на множині площин тощо.
О значення: відношення α, визначене у множині Х, називається антирефлексивним, якщо не кожен елемент множини Х перебуває у відношенні α сам з собою, тобто аαа.
С имволічно наведене означення можна записати так: ( хєХ)(аαа). Якщо відношення α антирефлексивне, то говорять, що елементи множини Х мають властивість антирефлексивності. Прикладами антирефлексивних відношень є відношення більше на множині чисел, перпендикулярності на множині прямих тощо.
Означення: відношення α, визначене у множині Х, називається симетричним, якщо для будь-яких а,вєХ із того, що аαв→вαа.
Символічно наведене означення можна записати так: ( а,вєХ)(аαв→вαа). Якщо відношення α симетричне, то говорять, що елементи множини Х мають властивість симетричності. Прикладами симетричних відношень є відношення дорівнює на множині фігур, перпендикулярності на множині прямих тощо.
О значення: відношення α, визначене у множині Х, називається асиметричним, якщо для будь-яких а,вєХ із того, що аαв→вαа.
С имволічно наведене означення можна записати так: ( а,вєХ)(аαв→вαа). Якщо відношення α асиметричне, то говорять, що елементи множини Х мають властивість асиметричності.
Означення: відношення α, визначене у множині Х, називається антисиметричним, якщо для будь-яких а,вєХ із того, що (аαв^вαа)→(а=в).
Символічно наведене означення можна записати так:
( а,вєХ)(аαв^вαа)→(а=в). Якщо відношення α антисиметричне, то говорять, що елементи множини Х мають властивість антисиметричності.
Означення: відношення α, визначене у множині Х, називається транзитивним, якщо для будь-яких а,в,сєХ із того, що (аαв^вαс)→(аαс).
Символічно наведене означення можна записати так:
( а,в,сєХ)(аαв^вαс)→(аαс). Якщо відношення α транзитивне, то говорять, що елементи множини Х мають властивість транзитивності. Прикладами транзитивних відношень можуть бути: відношення подільності на множині чисел, відношення менше на множині кутів тощо.
О значення: відношення α, визначене у множині Х, називається антитранзитивним, якщо для будь-яких а,в,сєХ із того, що (аαв^вαс)→(аαс).
С имволічно наведене означення можна записати так: ( а,в,сєХ)(аαв^вαс)→(аαс). Якщо відношення α антитранзитивне, то говорять, що елементи множини Х мають властивість антитранзитивності.
Означення: відношення α, визначене у множині Х називається зв’язним, якщо для будь-яких аαв і а≠в випливає, що аαв або вαа.
Прикладом таких відношень є відношення більше, менше на множині чисел.
- Розповсюдження та тиражування без офіційного дозволу заборонено
- Структура залікового кредиту курсу для спеціальності 6.010102 – початкове навчання (3 р.Н.).
- Робочий навчальний план з математики.
- Питання до екзамену за і семестр
- Питання до екзамену за ііі семестр
- Основна література
- Додаткова література
- Методичні посібники
- Модуль 1: «Множини. Відповідності. Відношення.». Змістовний модуль 1.1. «Множини та операції над ними». План.
- Література
- 1. Поняття множини та її елементу, їхні позначення. Загальноприйняті позначення основних числових множин. Способи задання множин.
- 2. Порожня, скінченна, нескінченна та універсальна множини. Підмножина. Власні та невласні підмножини даної множини. Рівні та нерівні множини.
- 4. Операція об’єднання (додавання) множин та основні властивості (закони) цієї операції.
- Малюнок № 1.7. Доведення переставного закону .
- 5. Операція перетину множин та основні властивості (закони) цієї операції.
- Малюнок № 1.8. Перетин множин .
- 6. Операції різниці (віднімання) множин та основні властивості (закони) цієї операції.
- 7. Операція доповнення до даної та універсальної множини та основні властивості (закони) цих операцій.
- Малюнок № 1.18. Доведення закону де Моргана ()'''.
- 8. Поняття розбиття множини на класи (підмножини), що попарно не перетинаються. Розбиття множини на класи за допомогою однієї, двох і трьох властивостей. Класифікації.
- 9. Поняття кортежу та впорядкованої пари. Поняття кортежу довжини n. Рівні пари та кортежі.
- Малюнок № 1.19. Задання декартового добутку множин за допомогою графа.
- Модуль 1: «Множини. Відповідності Відношення.». Змістовний модуль1.2. «Відповідності та відношення.». План.
- Малюнок № 1.20. Граф відповідності.
- 4. Відношення еквівалентності та порядку, їх властивості. Впорядковані множини. Зв'язок відношення еквівалентності з розбиттям множини на класи, що попарно не перетинаються.
- Розв’язання:
- Розв’язання:
- Малюнок № 1.21. Розв’язання задачі 2.
- Розв’язання:
- 2. Розміщення з повтореннями та без повторень.
- Доведення:
- Розв’язання.
- Доведення.
- Розв’язання.
- 3. Перестановки з повтореннями та без повторення.
- Розв’язання.
- Доведення.
- Розв’язання.
- 4. Комбiнацiї та їх властивості.
- Доведення.
- Розв’язання.
- Доведення.
- Доведення.
- Запитання для самоконтролю та завдання для самостійної роботи студентів за модулем 1.
- Модуль 2: «Висловлення. Предикати. Теореми.». Змістовний модуль 2.1. «Поняття.».
- 1. Поняття як форма мислення, зміст і обсяг поняття та зв'язок між ними.
- Діаграма № 2.1. Відношення часткового збігу між поняттями.
- Діаграма № 2.2. Відношення підпорядкування між поняттями.
- 3. Аксіоми. Теореми. Ознаки.
- Означуване поняття
- Видова відмінність
- Модуль 2: «Висловлення. Предикати. Теореми.». Змістовний модуль 2.2. «Висловлення та предикати.».
- 1. Поняття висловлення, їх види (елементарні, складені, рівносильні) та позначення.
- 2. Поняття предиката, його позначення та область визначення. Поняття кванторів існування та загальності, їх позначення та зв'язок між ними.
- 3. Операція заперечення над висловленнями та предикатами. Таблиці істинності. Основні властивості (закони) операції заперечення.
- Діаграма № 2.3. Множина істинності та заперечення даного предиката ā(х).
- 4. Операція кон’юнкції над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції кон’юнкції.
- 4.1. Операція кон'юнкції висловлень.
- 4.2. Операція кон'юнкції предикатів.
- 5. Операція диз’юнкції над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції диз’юнкції.
- 5.1. Операція диз’юнкції над висловленнями.
- 5.2. Диз'юнкція двох предикатів.
- 6. Операція імплікації над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції імплікації.
- 6.1. Операція імплікації висловлень.
- 6.2. Операція імплікації предикатів.
- 7. Операція еквіваленції над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції еквіваленції.
- 7.1. Операція еквіваленції висловлень.
- 7.2. Операція еквіваленції предикатів.
- Діаграма № 2.7. Множина істинності еквіваленції предикатів.
- Розв’язування:
- Розв’язання:
- Запитання для самоконтролю та самостійної роботи студентів за змістовним модулем 2.2.
- Модуль 2: «Висловлення. Предикати. Теореми.». Змістовний модуль 2.3. «Теореми.». План.
- 1. Поняття теореми, її будова. Види теорем (дана, обернена, протилежна, обернена до протилежної, спряжені теореми) та зв'язок між ними.
- 2. Способи доведення теорем (дедуктивний, індуктивний, метод від супротивного тощо).
- Доведення:
- 3. Необхідні та достатні умови.
- 4. Поняття міркування, правильні та неправильні міркування. Перевірка правильності міркувань з допомогою кругів л.Ейлера.
- 1. Короткі історичні відомості про виникнення понять натурального числа і нуля.
- 1. Питання № 1 вивчається самостійно за таким планом:
- 2. Різні підходи до побудови теорії цілих невід’ємних чисел.
- Діаграма № 3.1. Співвідношення між числовими множинами.
- 3. Поняття натурального числа і нуля у теоретико-множинній (кількісній) теорії.
- Малюнок № 3.1.
- 5. Множина цілих невід’ємних чисел та її властивості.
- 6. Визначення суми на множині цілих невід’ємних чисел, її існування та єдиність. Операція додавання та її основні властивості (закони).
- Доведення:
- Доведення:
- 7. Віднімання цілих невід’ємних чисел, зв'язок віднімання з додаванням. Теореми про існування та єдиність різниці.
- Доведення:
- Доведення:
- 8. Визначення добутку на множині цілих невід’ємних чисел, його існування та єдиність. Операція множення та її основні властивості (закони).
- Доведення:
- Доведення:
- Доведення:
- Доведення:
- 10. Операція ділення з остачею на множині цілих невід’ємних чисел.
- Доведення:
- Завдання для самоконтролю та самостійної роботи студентів за змістовним модулем 3.1.
- Модуль ііі. «різні підходи до побудови арифметики цілих невідємних чисел». Змістовний модуль 3.2. «Аксіоматична побудова арифметики цілих невід’ємних чисел.». План
- 1. Аксіоматичний метод у математиці та суть аксіоматичної побудови теорії.
- 2. Властивості аксіоматики (несуперечливість, повнота, незалежність) цілих невід’ємних чисел. Система аксіом Дж.Пеано. Поняття натурального числа і нуля в аксіоматичній теорії.
- 3. Метод математичної індукції.
- Доведення:
- Доведення:
- 4. Аксіоматичне означення додавання цілих невід’ємних чисел в аксіоматичній теорії. Таблиці і закони додавання.
- Доведення:
- Доведення:
- 5. Аксіоматичне означення множення цілих невід’ємних чисел в аксіоматичній теорії. Таблиці і закони множення.
- 6. Відношення порядку на множині цілих невід’ємних чисел.
- 7. Означення віднімання і ділення цілих невід’ємних чисел в аксіоматичній теорії.
- Модуль ііі. «різні підходи до побудови арифметики цілих невідємних чисел». Змістовний модуль 3.3. «Натуральне число як результат вимірювання величини.». План.
- 1. Поняття натурального ряду чисел та його відрізка. Лічба елементів скінченої множини. Порядкові і кількісні натуральні числа.
- 2. Порівняння відрізків, дії над відрізками. Натуральне число як результат вимірювання величини. Натуральне число як міра величини. Натуральне число як міра відрізка.
- Малюнок № 3.6. Різниця а-b відрізків.
- 3. Означення операцій додавання і віднімання чисел, що розглядаються як міри відрізків. Трактування множення і ділення, які розглядаються як міри відрізків.
- Модуль іу. «системи числення. Подільність чисел.». Змістовний модуль 4.1. «Системи числення.». План.
- 1. Позиційні та непозиційні системи числення, запис чисел у позиційних і непозиційних системах числення.
- 2. Алгоритми арифметичних операцій над цілими невід’ємними числами у десятковій системі числення.
- Розв’язання:
- Розв’язання:
- Розв’язання:
- Модуль іу. «системи числення. Подільність чисел.». Змістовний модуль 4.2. «Подільність цілих невід’ємних чисел.». План.
- 1. Поняття «відношення подільності» та його властивості.
- 2. Теореми про подільність суми, різниці і добутку цілих невід’ємних чисел на натуральні числа.
- 3. Загальна ознака подільності б.Паскаля. Ознаки подільності цілих невід’ємних чисел на 2, 3, 4, 5, 9, 25.
- 4. Прості і складені числа. Нескінченність множини простих чисел. Решето Ератосфена.
- 5. Основна теорема арифметики цілих невід’ємних чисел.
- Розв’язання:
- 6. Дільники і кратні. Спільні дільники і спільні кратні. Найбільший спільний дільник (нсд) і найменше спільне кратне (нск), їх властивості.
- 7. Обчислення нсд і нск способом канонічного розкладу на прості множники та за алгоритмом Евкліда.
- Розв’язання:
- 8. Ознаки подільності на складені числа.
- Завдання для самоконтролю та самостійної роботи студентів.
- Модуль у. «розширення поняття про число». Змістовний модуль 5.1. «Цілі числа.». План.
- 1. Задача розширення поняття про число. Необхідність розширення множини натуральних чисел.
- 2. Побудова множини цілих чисел. Зображення цілих чисел на числовій прямій.
- Малюнок № 5.1. Зображення точок а(4) і в(-6).
- Розв’язання:
- 3. Властивості множини цілих чисел.
- Доведення:
- 4. Додавання, віднімання, множення і ділення цілих чисел. Теореми про існування та єдиність цих операцій. Закони операцій додавання і множення.
- Модуль у. «розширення поняття про число». Змістовний модуль 5.2. «Раціональні числа.». План.
- 1. Необхідність розширення множини цілих чисел.
- 2. Поняття дробу. Рівність дробів. Основна властивість дробів. Скорочення дробів та їх зведення до спільного знаменника. Нескоротні дроби.
- Доведення.
- 3. Невід’ємні раціональні числа та їх властивості.
- Доведення.
- Доведення.
- 4. Відношення порядку на множині невід’ємних раціональних чисел.
- Доведення.
- Доведення.
- 5. Додавання і віднімання невід’ємних раціональних чисел. Теореми про існування та єдиність суми і різниці. Властивості (закони) додавання.
- Доведення.
- Доведення.
- Доведення.
- 6. Множення і ділення невід’ємних раціональних чисел. Теореми про існування та єдиність добутку та частки. Властивості (закони) множення.
- Доведення.
- Доведення.
- Доведення.
- 7. Властивості множини невід’ємних раціональних чисел.
- 8. Десяткові дроби, їх порівняння, операції над ними. Перетворення десяткових дробів у звичайні та звичайних у десяткові.
- Доведення.
- 9. Додатні раціональні числа як нескінченні періодичні десяткові дроби. Чисті та мішані періодичні дроби та їх перетворення у звичайні.
- Розв’язання.
- 10. Множина раціональних чисел, модуль раціонального числа, операції над раціональними числами. Властивості множини раціональних чисел.
- Діаграма № 5.1. Співвідношення між числовими множинами q, z, n.
- Доведення.
- Малюнок № 5.2.
- 2. Додатні ірраціональні числа. Невід’ємні дійсні числа.
- Діаграма № 5.2. Співвідношення між числовими множинами n, z, q, r.
- 3. Відношення порядку на множині дійсних чисел.
- Розв’язання.
- Розв’язання.
- 4. Додавання і віднімання додатних дійсних чисел.
- Розв’язання.
- Розв’язання.
- Розв’язання.
- 5. Множення та ділення додатних дійсних чисел.
- Розв’язання.
- Розв’язання.
- 6. Множина дійсних чисел та її властивості.
- Запитання для самоконтролю та самостійної роботи студентів за модулем у.
- Модуль 6. : «вирази. Рівняння. Нерівності. Функції». Змістовний модуль 6.1. «Вирази.».
- 1. Числові вирази та їх види. Значення числового виразу та порядок обчислення значень числового виразу.
- Розв’язання:
- 2. Числові рівності та нерівності, їх властивості.
- 3. Вираз із змінною та його область визначення.
- 4. Тотожні перетворення виразів. Тотожності. Виведення основних тотожностей.
- Модуль 6. : «вирази. Рівняння. Нерівності. Функції». Змістовний модуль 6.2. «Рівняння, їх системи і сукупності.».
- Розв’язання:
- 2. Рівносильні рівняння. Теореми про рівносильність рівнянь.
- Розв’язання:
- Доведення:
- Розв’язання:
- 3. Рівняння з двома змінними. Рівняння лінії. Рівняння прямої та їх види.
- Малюнок № 6.1. Графік рівняння кола.
- Малюнок № 6.3.
- Малюнок № 6.4.
- 4. Системи та сукупності рівнянь з двома змінними та способи (алгебраїчні та графічні) їх розв’язування.
- Розв’язання.
- Розв’язання.
- Розв’язання.
- 5. Застосування рівнянь та їх систем до розв’язування текстових задач.
- Модуль 6. : «вирази. Рівняння. Нерівності. Функції». Змістовний модуль 6.3. «Нерівності, їх системи і сукупності.».
- 2. Рівносильні нерівності. Теореми про рівносильність нерівностей.
- Доведення.
- Доведення.
- 3. Системи та сукупності нерівностей з однією змінною та способи їх розв’язування. Нерівності та системи нерівностей з двома змінними, графічний спосіб їх розв’язування.
- Розв’язання.
- Модуль 6. : «вирази. Рівняння. Нерівності. Функції». Змістовний модуль 6.4. «Функції.».
- 1. Поняття числової функції, способи їх задання, графік та властивості.
- 2. Пряма пропорційність, її властивості та графік.
- 3. Лінійна функція, її властивості та графік.
- 4. Обернена пропорційність, її властивості та графік.
- 5*. Квадратична функція, її властивості та графік.
- 6*. Операції над функціями та графіками, перетворення графіків.
- Розв’язання.
- Розв’язання.
- Розв’язання.
- Розв’язання.
- Запитання для самоконтролю та самостійної роботи студентів.
- Модуль 7: «елементи геометрії. Величини.». Змістовний модуль 7.1. «Геометричні побудови на площині.».
- 1. Короткі історичні відомості про виникнення та розвиток геометрії. Поняття про аксіоматичний метод побудови геометрії та історію його розвитку в геометрії.
- 2. Основні геометричні побудови циркулем і лінійкою.
- Побудова кута, що дорівнює даному (див. Малюнок № 7.1.).
- Поділ відрізка пополам.
- Малюнок № 7.2. Поділ кута пополам.
- Побудова прямої, яка проходить через дану на ній точку, перпендикулярно до даної прямої (малюнок № 7.4.).
- Побудова трикутника за трьома сторонами.
- 3. Основні методи геометричних побудов (метод гмт, методи осьової та центральної симетрії, метод паралельного перенесення, метод гомотетії, алгебраїчний метод).
- Метод геометричних місць точок.
- Малюнок № 7.5. Метод симетрії відносно прямої.
- Метод повороту площини навколо точки.
- Метод симетрії відносно даної точки.
- Метод паралельного перенесення.
- Метод гомотетії.
- Алгебраїчний метод.
- 4. Побудова правильних многогранників.
- 2. Правильні многогранники та їх види.
- Доведення:
- 3. Поняття тіла обертання, їх види (циліндр, конус, куля. Сфера) та їх зображення на площині.
- Модуль 7: «елементи геометрії. Величини.». Змістовний модуль 7.3. «Величини та їх вимірювання.».
- 1. Поняття величини та її вимірювання. Відображення властивостей реального світу через поняття величини. Види величин.
- 2. Поняття довжини відрізка та способів його вимірювання. Основні властивості довжини. Одиниці вимірювання довжини та співвідношення між ними.
- 3. Поняття площі плоскої фігури, її основні властивості та способи вимірювання. Рівновеликі та рівноскладені фігури. Одиниці вимірювання площі та співвідношення між ними.
- Малюнок № 7.10.. Квадрати нульового рангу.
- Малюнок № 7.11. Фігури ф і f.
- Доведення:
- 4. Виведення формул для знаходження площі паралелограма, трикутника, трапеції. Формули для знаходження площ поверхонь просторових геометричних фігур.
- Малюнок № 7.12.
- Малюнок № 7.13.
- Доведення:
- Малюнок № 7.14.
- Доведення:
- Доведення:
- Малюнок № 7.16.
- 5*. Поняття об’єму тіла, його властивостей, способів його вимірювання, одиниць вимірювання та співвідношень між ними. Об’єми многогранників та тіл обертання.
- Запитання для самоконтролю та самостійної роботи студентів.