1. Позиційні та непозиційні системи числення, запис чисел у позиційних і непозиційних системах числення.
1. Ми розглянули означення арифметичних дій додавання, віднімання, множення та ділення, а також властивості цих дій. Розглянуті нами означення та властивості не залежать від способу зображення чисел. Разом з тим, виявляється, що техніка виконання арифметичних дій залежить від способу зображення чисел або, як кажуть, від системи числення чи нумерації чисел. У зв’язку зі сказаним постає питання: що ж таке система числення чи нумерація?
Означення: системою числення або нумерацією називається сукупність правил, знаків або слів, за допомогою яких можна зобразити письмово чи назвати усно будь-яке число.
Таким чином, система числення (у подальшому викладі для економії місця будемо використовувати скорочену абревіатуру СЧ) або нумерація – це спосіб запису і читання чисел. Саме тому розрізняють усну та письмову нумерації.
Означення: ціле невід’ємне число, зображене у певній системі числення називають системним або систематичним числом.
Досить цікавим є питання про те, коли з’явилися системи числення та якими вони бувають. З історії математики відомо, що СЧ з’явилися дуже давно, тоді, коли з’явилася писемність. Всі СЧ за своєю «граматичною» побудовою поділяються на дві великі групи: позиційні та непозиційні.
Непозиційні СЧ характеризуються тим, що кожен знак із множини знаків, що використовуються для позначення чисел у даній СЧ, завжди позначає одне й теж саме число незалежно від позиції (місця), яку він займає у запису числа. Так, наприклад, непозиційною системою числення є римська нумерація, в якій використовуються такі знаки або цифри для позначення чисел: І -1, У – 5, Х – 10, L – 50, C – 100, D – 500, M – 1000 тощо. У наш час непозиційні системи числення використовуються досить рідко. Слід також відзначити, що навіть римська система числення набула у процесі свого розвитку певних змін і стала адитивною. Це означає, що при записі чисел в цій СЧ використовуються певні правила, а саме: якщо менше число стоїть у запису перед більшим, то його слід віднімати від більшого, наприклад: ІХ – це 10-1=9; якщо менше число стоїть у запису після більшого, то його слід додавати до більшого, наприклад: ХІ це 10+1=11.
У позиційних системах числення кожна цифра в залежності від місця, яке вона займає у запису числа, позначає різне число. Так, наприклад, у числі 23242 маємо у записі три цифри 2, причому перша зліва позначає 2 десятки тисяч (20000), друга – 2 сотні одиниць (200), а третя – 2 одиниці. Найпоширенішою нині є десяткова позиційна система числення, яка, як вважають історики математики, виникла у ІІІ столітті в Індії. Цифра 0 (нуль), на думку дослідників історії математики, вперше зустрічається у УІІІ столітті. Араби запозичили цю систему числення і привезли її у ІХ столітті в Європу, де вона почала поширюватися під назвою арабської та стала загальновживаною у ХУ столітті. Скільки ж ще існувало позиційних систем числення, відмінних від десяткової? Є факти, що дають підстави твердити: позиційних систем числення було чимало. Так, і досі, у повсякденному житті ми зустрічаємося із залишками таких позиційних систем числення як шестидесятіркова (1 год. = 60 хв, 1 хв = 60 с, 1 копа снопів дорівнює 60 снопам тощо), дванадцятіркова (1 дюжина дорівнює 12) тощо.
Що ж спільного у записі чисел у позиційних системах числення? – для запису чисел використовується скінченна кількість знаків-цифр, причому залежно від системи числення кількість цифр є різною. Так, у десятковій позиційній системі числення для запису будь-якого числа використовується всього десять знаків-цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. для називання всіх чисел використовується також скінченна кількість слів. Так, для називання чисел, що вивчаються у початкових класах, використовуються слова: нуль, один, два, три, чотири, п’ять, шість, сім, вісім, дев’ять, десять, сорок, сто, тисяча, мільйон, мільярд, тобто шістнадцять нових слів, а решта утворюється із названих, наприклад: два-на-дцять, дев’яно-сто, одна тисяча п’ятсот шістдесят вісім тощо.
Що ж таке число у позиційній системі числення? – це всяка скінченна послідовність цифр, причому кожна цифра в цьому записі означає відповідну кількість одиниць того чи іншого розряду. Розряди називають перший, другий, третій тощо. Для зручності розряди об’єднують по три, називаючи їх класами. Так, перший клас, що об’єднує перші три розряди, називають класом одиниць, другий клас – класом тисяч, третій - класом мільйонів, четвертий – класом мільярдів тощо. Наприклад, число 2345=2000+300+40+5=2·1000+3·100+4·10+5=2·10³+3·10²+4·10¹+5·10º. У цьому записі особливу роль відіграє число 10, яке називають основою десяткової позиційної системи числення. Існують СЧ з іншими основами, наприклад: СЧ, основою якої є число 2, називають двійковою. Для запису чисел у цій системі числення використовують всього дві цифри 0 і 1; у трійковій системі числення використовується три цифри: 0,1,2; у дванадцятірковій системі числення основою є число 12, а тому для запису чисел використовується дванадцять цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, (10), (11), причому дві останні цифри взято в дужки, щоб відрізняти їх від запису двоцифрових чисел 10 і 11. Таким чином, щоб визначити, скільки цифр використовується для запису чисел у тій чи іншій позиційній системі числення потрібно визначити її основу. Так, у шестидесятірковій системі числення використовується для запису чисел шістдесят цифр: 0, 1, 2, … (58), (59). У загальному випадку у системі числення з основою q використовується q-1 цифра, якщо не рахувати цифру 0.
Як же відрізнити запис числа в одній позиційній системі числення від запису в іншій? – для цього справа знизу пишуть індексом основу системи числення (за винятком десяткової!), наприклад: 10123, 1(11)123(10)512, 123456 тощо. Відповідь на запитання «а чи всяке натуральне число можна записати у вказаній позиційній системі числення?» дає наступна теорема.
Теорема: будь-яке натуральне число можна зобразити у довільній позиційній системі числення і до того ж єдиним чином.
Доведення: оскільки у формулюванні теореми говориться про існування та єдиність зображення, то її доведення складатиметься з двох частин. У першій частині доведемо існування такого зображення, а у другій – його єдиність. Для доведення існування зображення використаємо теорему про існування частки та остачі. Розглянемо деяке натуральне число а в позиційній системі числення з основою q. Між числами а і q можливе одно із трьох співвідношень: 1) а<q; 2) а=q; 3) а>q. Розглянемо поступово всі три випадки. Якщо а<q, то тоді в системі числення з основою q ми маємо одноцифрове число а. Отже, зображення числа а існує. Якщо а=q, то ми маємо найменше двоцифрове число цієї системи числення, яке зображатиметься так: а=10q. Отже, і в цьому випадку зображення існує.
Н ехай а>q. Тоді згідно з теоремою про існування частки і остачі існує два числа g0 і r0 такі, що а=q•g0+r0, де 0≤r0<q. Якщо g0<q, то ми будемо мати двозначне число а=q•g0+r0=g0r0. Якщо ж g0>q, то поділивши g0 на q, одержимо рівність g0=q•g1+r1, а тоді а=q•(q•g1+r1)0+r0=q²•g1+r1q+r0= g1r1r0. Якщо g1>q, то поділивши g1 на q, одержимо g1=q•g2+r2, а тоді а=q²•(q•g2+r2)+r1q+r0=q³•g2+q²r2+r1q+r0. Якщо g2<q, то число а=g2r2r1r0. Цей процес буде продовжуватися доти, доки не отримаємо gn<q. Таким чином, отримаємо запис: а=gn•qn+rn-1•qn-1+rn-2•qn-2+…+r2•q2+r1•q1+r0=rngn-1rn-2…r2r1r0, де rn, rn-1, rn-2,…,r2, r1, r0 – цифри числа а. Отже, зображення числа а у системі числення з основою q існує. Першу частину теореми доведено.
Другу частину теореми про єдиність такого зображення доведемо методом від супротивного. Припустимо, що існує два різних способи зображення числа а у системі числення з основою q, а саме: а=аn•qn+аn-1•qn-1+аn-2•qn-2+…+а2•q2+а1•q1+а0 і а=вk•qk+вk-1•qk-1+вk-2•qk-2+…+в2•q2+в1•q1+в0, де аn, аn-1, аn-2, …, а2, а1, а0, вk, вk-1, вk-2, …, в2, в1, в0 - цифри числа а у першому та другому зображеннях. Припустимо для визначеності, що n>k. Тоді а=аn•qn+аn-1•qn-1+аn-2•qn-2+…+а2•q2+а1•q1+а0=вk•qk+вk-1•qk-1+вk-2•qk-2+…+в2•q2+в1•q1+в0. Нехай у цих записах різні цифри одиниць, тобто а0≠в0. Для визначеності виберемо, що а0>в0. Тоді знайдемо різницю а0-в0=(вk•qk+вk-1•qk-1+вk-2•qk-2+…+в2•q2+в1•q1)-(аn•qn+аn-1•qn-1+аn-2•qn-…+а2•q2+а1•q1)=q((вk•qk-1
+вk-1•qk-2+вk-2•qk-3+…+в2•q1+в1)-(аn•qn-1+аn-1•qn-2+аn-2•qn-3+…+а2•q1+а1)). За умовою а0<q і в0<q, а тоді а0-в0<q. Отже, а0-в0 не ділиться націло на q, у той час як права частина рівності q((вk•qk-1+вk-1•qk-2+вk-2•qk-3+…+в2•q1+в1)-(аn•qn-1+аn-1•qn-2+аn-2•qn-3+…+а2•q1+а1)) ділиться націло на q. Таким чином, якщо менше за q число (а0-в0):q, то це можливо за умови а0-в0=0, тобто а0=в0. А це суперечить вибору а0 і в0. Аналогічно можна довести, що і при а1≠в1, а2≠в2, …, аk≠вk ми прийдемо до суперечності з вибором цих чисел, тобто одержимо, що а1=в1, а2=в2, …, аk=вk. Це означає, що аk+1=аk+2=аk+3=…=an=0. Отже, якщо зображення існує, то воно єдине. Теорему доведено повністю.
Вправа: запишіть число 342103215 у вигляді суми розрядних доданків у п’ятірковій системі числення.
Розв’язання: у цьому числі є вісім розрядів, а тому найвищий степінь основи системи числення 5 буде сім. Отже, маємо: 342103215=3•57+4•56+2•55+1•54+0•53+3•52+2•51+1•50.
- Розповсюдження та тиражування без офіційного дозволу заборонено
- Структура залікового кредиту курсу для спеціальності 6.010102 – початкове навчання (3 р.Н.).
- Робочий навчальний план з математики.
- Питання до екзамену за і семестр
- Питання до екзамену за ііі семестр
- Основна література
- Додаткова література
- Методичні посібники
- Модуль 1: «Множини. Відповідності. Відношення.». Змістовний модуль 1.1. «Множини та операції над ними». План.
- Література
- 1. Поняття множини та її елементу, їхні позначення. Загальноприйняті позначення основних числових множин. Способи задання множин.
- 2. Порожня, скінченна, нескінченна та універсальна множини. Підмножина. Власні та невласні підмножини даної множини. Рівні та нерівні множини.
- 4. Операція об’єднання (додавання) множин та основні властивості (закони) цієї операції.
- Малюнок № 1.7. Доведення переставного закону .
- 5. Операція перетину множин та основні властивості (закони) цієї операції.
- Малюнок № 1.8. Перетин множин .
- 6. Операції різниці (віднімання) множин та основні властивості (закони) цієї операції.
- 7. Операція доповнення до даної та універсальної множини та основні властивості (закони) цих операцій.
- Малюнок № 1.18. Доведення закону де Моргана ()'''.
- 8. Поняття розбиття множини на класи (підмножини), що попарно не перетинаються. Розбиття множини на класи за допомогою однієї, двох і трьох властивостей. Класифікації.
- 9. Поняття кортежу та впорядкованої пари. Поняття кортежу довжини n. Рівні пари та кортежі.
- Малюнок № 1.19. Задання декартового добутку множин за допомогою графа.
- Модуль 1: «Множини. Відповідності Відношення.». Змістовний модуль1.2. «Відповідності та відношення.». План.
- Малюнок № 1.20. Граф відповідності.
- 4. Відношення еквівалентності та порядку, їх властивості. Впорядковані множини. Зв'язок відношення еквівалентності з розбиттям множини на класи, що попарно не перетинаються.
- Розв’язання:
- Розв’язання:
- Малюнок № 1.21. Розв’язання задачі 2.
- Розв’язання:
- 2. Розміщення з повтореннями та без повторень.
- Доведення:
- Розв’язання.
- Доведення.
- Розв’язання.
- 3. Перестановки з повтореннями та без повторення.
- Розв’язання.
- Доведення.
- Розв’язання.
- 4. Комбiнацiї та їх властивості.
- Доведення.
- Розв’язання.
- Доведення.
- Доведення.
- Запитання для самоконтролю та завдання для самостійної роботи студентів за модулем 1.
- Модуль 2: «Висловлення. Предикати. Теореми.». Змістовний модуль 2.1. «Поняття.».
- 1. Поняття як форма мислення, зміст і обсяг поняття та зв'язок між ними.
- Діаграма № 2.1. Відношення часткового збігу між поняттями.
- Діаграма № 2.2. Відношення підпорядкування між поняттями.
- 3. Аксіоми. Теореми. Ознаки.
- Означуване поняття
- Видова відмінність
- Модуль 2: «Висловлення. Предикати. Теореми.». Змістовний модуль 2.2. «Висловлення та предикати.».
- 1. Поняття висловлення, їх види (елементарні, складені, рівносильні) та позначення.
- 2. Поняття предиката, його позначення та область визначення. Поняття кванторів існування та загальності, їх позначення та зв'язок між ними.
- 3. Операція заперечення над висловленнями та предикатами. Таблиці істинності. Основні властивості (закони) операції заперечення.
- Діаграма № 2.3. Множина істинності та заперечення даного предиката ā(х).
- 4. Операція кон’юнкції над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції кон’юнкції.
- 4.1. Операція кон'юнкції висловлень.
- 4.2. Операція кон'юнкції предикатів.
- 5. Операція диз’юнкції над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції диз’юнкції.
- 5.1. Операція диз’юнкції над висловленнями.
- 5.2. Диз'юнкція двох предикатів.
- 6. Операція імплікації над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції імплікації.
- 6.1. Операція імплікації висловлень.
- 6.2. Операція імплікації предикатів.
- 7. Операція еквіваленції над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції еквіваленції.
- 7.1. Операція еквіваленції висловлень.
- 7.2. Операція еквіваленції предикатів.
- Діаграма № 2.7. Множина істинності еквіваленції предикатів.
- Розв’язування:
- Розв’язання:
- Запитання для самоконтролю та самостійної роботи студентів за змістовним модулем 2.2.
- Модуль 2: «Висловлення. Предикати. Теореми.». Змістовний модуль 2.3. «Теореми.». План.
- 1. Поняття теореми, її будова. Види теорем (дана, обернена, протилежна, обернена до протилежної, спряжені теореми) та зв'язок між ними.
- 2. Способи доведення теорем (дедуктивний, індуктивний, метод від супротивного тощо).
- Доведення:
- 3. Необхідні та достатні умови.
- 4. Поняття міркування, правильні та неправильні міркування. Перевірка правильності міркувань з допомогою кругів л.Ейлера.
- 1. Короткі історичні відомості про виникнення понять натурального числа і нуля.
- 1. Питання № 1 вивчається самостійно за таким планом:
- 2. Різні підходи до побудови теорії цілих невід’ємних чисел.
- Діаграма № 3.1. Співвідношення між числовими множинами.
- 3. Поняття натурального числа і нуля у теоретико-множинній (кількісній) теорії.
- Малюнок № 3.1.
- 5. Множина цілих невід’ємних чисел та її властивості.
- 6. Визначення суми на множині цілих невід’ємних чисел, її існування та єдиність. Операція додавання та її основні властивості (закони).
- Доведення:
- Доведення:
- 7. Віднімання цілих невід’ємних чисел, зв'язок віднімання з додаванням. Теореми про існування та єдиність різниці.
- Доведення:
- Доведення:
- 8. Визначення добутку на множині цілих невід’ємних чисел, його існування та єдиність. Операція множення та її основні властивості (закони).
- Доведення:
- Доведення:
- Доведення:
- Доведення:
- 10. Операція ділення з остачею на множині цілих невід’ємних чисел.
- Доведення:
- Завдання для самоконтролю та самостійної роботи студентів за змістовним модулем 3.1.
- Модуль ііі. «різні підходи до побудови арифметики цілих невідємних чисел». Змістовний модуль 3.2. «Аксіоматична побудова арифметики цілих невід’ємних чисел.». План
- 1. Аксіоматичний метод у математиці та суть аксіоматичної побудови теорії.
- 2. Властивості аксіоматики (несуперечливість, повнота, незалежність) цілих невід’ємних чисел. Система аксіом Дж.Пеано. Поняття натурального числа і нуля в аксіоматичній теорії.
- 3. Метод математичної індукції.
- Доведення:
- Доведення:
- 4. Аксіоматичне означення додавання цілих невід’ємних чисел в аксіоматичній теорії. Таблиці і закони додавання.
- Доведення:
- Доведення:
- 5. Аксіоматичне означення множення цілих невід’ємних чисел в аксіоматичній теорії. Таблиці і закони множення.
- 6. Відношення порядку на множині цілих невід’ємних чисел.
- 7. Означення віднімання і ділення цілих невід’ємних чисел в аксіоматичній теорії.
- Модуль ііі. «різні підходи до побудови арифметики цілих невідємних чисел». Змістовний модуль 3.3. «Натуральне число як результат вимірювання величини.». План.
- 1. Поняття натурального ряду чисел та його відрізка. Лічба елементів скінченої множини. Порядкові і кількісні натуральні числа.
- 2. Порівняння відрізків, дії над відрізками. Натуральне число як результат вимірювання величини. Натуральне число як міра величини. Натуральне число як міра відрізка.
- Малюнок № 3.6. Різниця а-b відрізків.
- 3. Означення операцій додавання і віднімання чисел, що розглядаються як міри відрізків. Трактування множення і ділення, які розглядаються як міри відрізків.
- Модуль іу. «системи числення. Подільність чисел.». Змістовний модуль 4.1. «Системи числення.». План.
- 1. Позиційні та непозиційні системи числення, запис чисел у позиційних і непозиційних системах числення.
- 2. Алгоритми арифметичних операцій над цілими невід’ємними числами у десятковій системі числення.
- Розв’язання:
- Розв’язання:
- Розв’язання:
- Модуль іу. «системи числення. Подільність чисел.». Змістовний модуль 4.2. «Подільність цілих невід’ємних чисел.». План.
- 1. Поняття «відношення подільності» та його властивості.
- 2. Теореми про подільність суми, різниці і добутку цілих невід’ємних чисел на натуральні числа.
- 3. Загальна ознака подільності б.Паскаля. Ознаки подільності цілих невід’ємних чисел на 2, 3, 4, 5, 9, 25.
- 4. Прості і складені числа. Нескінченність множини простих чисел. Решето Ератосфена.
- 5. Основна теорема арифметики цілих невід’ємних чисел.
- Розв’язання:
- 6. Дільники і кратні. Спільні дільники і спільні кратні. Найбільший спільний дільник (нсд) і найменше спільне кратне (нск), їх властивості.
- 7. Обчислення нсд і нск способом канонічного розкладу на прості множники та за алгоритмом Евкліда.
- Розв’язання:
- 8. Ознаки подільності на складені числа.
- Завдання для самоконтролю та самостійної роботи студентів.
- Модуль у. «розширення поняття про число». Змістовний модуль 5.1. «Цілі числа.». План.
- 1. Задача розширення поняття про число. Необхідність розширення множини натуральних чисел.
- 2. Побудова множини цілих чисел. Зображення цілих чисел на числовій прямій.
- Малюнок № 5.1. Зображення точок а(4) і в(-6).
- Розв’язання:
- 3. Властивості множини цілих чисел.
- Доведення:
- 4. Додавання, віднімання, множення і ділення цілих чисел. Теореми про існування та єдиність цих операцій. Закони операцій додавання і множення.
- Модуль у. «розширення поняття про число». Змістовний модуль 5.2. «Раціональні числа.». План.
- 1. Необхідність розширення множини цілих чисел.
- 2. Поняття дробу. Рівність дробів. Основна властивість дробів. Скорочення дробів та їх зведення до спільного знаменника. Нескоротні дроби.
- Доведення.
- 3. Невід’ємні раціональні числа та їх властивості.
- Доведення.
- Доведення.
- 4. Відношення порядку на множині невід’ємних раціональних чисел.
- Доведення.
- Доведення.
- 5. Додавання і віднімання невід’ємних раціональних чисел. Теореми про існування та єдиність суми і різниці. Властивості (закони) додавання.
- Доведення.
- Доведення.
- Доведення.
- 6. Множення і ділення невід’ємних раціональних чисел. Теореми про існування та єдиність добутку та частки. Властивості (закони) множення.
- Доведення.
- Доведення.
- Доведення.
- 7. Властивості множини невід’ємних раціональних чисел.
- 8. Десяткові дроби, їх порівняння, операції над ними. Перетворення десяткових дробів у звичайні та звичайних у десяткові.
- Доведення.
- 9. Додатні раціональні числа як нескінченні періодичні десяткові дроби. Чисті та мішані періодичні дроби та їх перетворення у звичайні.
- Розв’язання.
- 10. Множина раціональних чисел, модуль раціонального числа, операції над раціональними числами. Властивості множини раціональних чисел.
- Діаграма № 5.1. Співвідношення між числовими множинами q, z, n.
- Доведення.
- Малюнок № 5.2.
- 2. Додатні ірраціональні числа. Невід’ємні дійсні числа.
- Діаграма № 5.2. Співвідношення між числовими множинами n, z, q, r.
- 3. Відношення порядку на множині дійсних чисел.
- Розв’язання.
- Розв’язання.
- 4. Додавання і віднімання додатних дійсних чисел.
- Розв’язання.
- Розв’язання.
- Розв’язання.
- 5. Множення та ділення додатних дійсних чисел.
- Розв’язання.
- Розв’язання.
- 6. Множина дійсних чисел та її властивості.
- Запитання для самоконтролю та самостійної роботи студентів за модулем у.
- Модуль 6. : «вирази. Рівняння. Нерівності. Функції». Змістовний модуль 6.1. «Вирази.».
- 1. Числові вирази та їх види. Значення числового виразу та порядок обчислення значень числового виразу.
- Розв’язання:
- 2. Числові рівності та нерівності, їх властивості.
- 3. Вираз із змінною та його область визначення.
- 4. Тотожні перетворення виразів. Тотожності. Виведення основних тотожностей.
- Модуль 6. : «вирази. Рівняння. Нерівності. Функції». Змістовний модуль 6.2. «Рівняння, їх системи і сукупності.».
- Розв’язання:
- 2. Рівносильні рівняння. Теореми про рівносильність рівнянь.
- Розв’язання:
- Доведення:
- Розв’язання:
- 3. Рівняння з двома змінними. Рівняння лінії. Рівняння прямої та їх види.
- Малюнок № 6.1. Графік рівняння кола.
- Малюнок № 6.3.
- Малюнок № 6.4.
- 4. Системи та сукупності рівнянь з двома змінними та способи (алгебраїчні та графічні) їх розв’язування.
- Розв’язання.
- Розв’язання.
- Розв’язання.
- 5. Застосування рівнянь та їх систем до розв’язування текстових задач.
- Модуль 6. : «вирази. Рівняння. Нерівності. Функції». Змістовний модуль 6.3. «Нерівності, їх системи і сукупності.».
- 2. Рівносильні нерівності. Теореми про рівносильність нерівностей.
- Доведення.
- Доведення.
- 3. Системи та сукупності нерівностей з однією змінною та способи їх розв’язування. Нерівності та системи нерівностей з двома змінними, графічний спосіб їх розв’язування.
- Розв’язання.
- Модуль 6. : «вирази. Рівняння. Нерівності. Функції». Змістовний модуль 6.4. «Функції.».
- 1. Поняття числової функції, способи їх задання, графік та властивості.
- 2. Пряма пропорційність, її властивості та графік.
- 3. Лінійна функція, її властивості та графік.
- 4. Обернена пропорційність, її властивості та графік.
- 5*. Квадратична функція, її властивості та графік.
- 6*. Операції над функціями та графіками, перетворення графіків.
- Розв’язання.
- Розв’язання.
- Розв’язання.
- Розв’язання.
- Запитання для самоконтролю та самостійної роботи студентів.
- Модуль 7: «елементи геометрії. Величини.». Змістовний модуль 7.1. «Геометричні побудови на площині.».
- 1. Короткі історичні відомості про виникнення та розвиток геометрії. Поняття про аксіоматичний метод побудови геометрії та історію його розвитку в геометрії.
- 2. Основні геометричні побудови циркулем і лінійкою.
- Побудова кута, що дорівнює даному (див. Малюнок № 7.1.).
- Поділ відрізка пополам.
- Малюнок № 7.2. Поділ кута пополам.
- Побудова прямої, яка проходить через дану на ній точку, перпендикулярно до даної прямої (малюнок № 7.4.).
- Побудова трикутника за трьома сторонами.
- 3. Основні методи геометричних побудов (метод гмт, методи осьової та центральної симетрії, метод паралельного перенесення, метод гомотетії, алгебраїчний метод).
- Метод геометричних місць точок.
- Малюнок № 7.5. Метод симетрії відносно прямої.
- Метод повороту площини навколо точки.
- Метод симетрії відносно даної точки.
- Метод паралельного перенесення.
- Метод гомотетії.
- Алгебраїчний метод.
- 4. Побудова правильних многогранників.
- 2. Правильні многогранники та їх види.
- Доведення:
- 3. Поняття тіла обертання, їх види (циліндр, конус, куля. Сфера) та їх зображення на площині.
- Модуль 7: «елементи геометрії. Величини.». Змістовний модуль 7.3. «Величини та їх вимірювання.».
- 1. Поняття величини та її вимірювання. Відображення властивостей реального світу через поняття величини. Види величин.
- 2. Поняття довжини відрізка та способів його вимірювання. Основні властивості довжини. Одиниці вимірювання довжини та співвідношення між ними.
- 3. Поняття площі плоскої фігури, її основні властивості та способи вимірювання. Рівновеликі та рівноскладені фігури. Одиниці вимірювання площі та співвідношення між ними.
- Малюнок № 7.10.. Квадрати нульового рангу.
- Малюнок № 7.11. Фігури ф і f.
- Доведення:
- 4. Виведення формул для знаходження площі паралелограма, трикутника, трапеції. Формули для знаходження площ поверхонь просторових геометричних фігур.
- Малюнок № 7.12.
- Малюнок № 7.13.
- Доведення:
- Малюнок № 7.14.
- Доведення:
- Доведення:
- Малюнок № 7.16.
- 5*. Поняття об’єму тіла, його властивостей, способів його вимірювання, одиниць вимірювання та співвідношень між ними. Об’єми многогранників та тіл обертання.
- Запитання для самоконтролю та самостійної роботи студентів.