logo
Лекції з матем - заоч

4. Аксіоматичне означення додавання цілих невід’ємних чисел в аксіоматичній теорії. Таблиці і закони додавання.

4. Операцію додавання на множини цілих невід’ємних чисел також введемо аксіоматично. Для цього сформулюємо дві додаткові аксіоми, які визначають в множині цілих невід’ємних чисел бінарну алгебраїчну операцію, яка однозначно визначена і задовольняє аксіомам 5 – 6.

Означення: додаванням цілих невід’ємних чисел називається бінарна алгебраїчна операція (якщо вона існує!), яка кожній парі цілих невід’ємних чисел (а,в)єZo2 ставить у відповідність ціле невід’ємне число (а+в)єZo, таке, що виконуються аксіоми 5 і 6.

Аксіома 5: для будь–якого цілого невід’ємного числа справедлива рівність а+0=а (символічно ці аксіома запишеться так: (аєZo)(а+0=а). Вона визначає операцію додавання з нулем).

Аксіома 6: (а,вєZo)(а+в'=(а+в)').

Інколи можна зустріти і таке формулювання аксіом:

Аксіома 5: при додаванні нуля до будь-якого цілого невід’ємного числа отримуємо те саме ціле невід’ємне число (символічно ця аксіома запишеться так: (єZo)[а+0=х]).

Аксіома 6: при додаванні до а будь-якого цілого невід’ємного числа, яке безпосередньо слідує за числом в, отримуємо ціле невід’ємне число, яке безпосередньо йде за числом а+в (символічно ця аксіома запишеться так: (,вєZo)[а+в'=(а+в)']. Саме така рівність обумовлена тим, що в'=в+1, а тоді а+в'=а+(в+1)=(а+в)+1=(а+в)').

Ввівши аксіоматичне означення операції додавання цілих невід’ємних чисел, ми нічого не знаємо про її існування та єдиність. Саме тому слід довести відповідні теореми.

Теорема 1: (про існування та єдиність операції додавання): операція додавання в множині Zo цілих невід’ємних чисел існує і єдина або існує одне і тільки одне відображення f : Zo2Zo, яке кожній парі (а,в)єZo ставить у відповідність єдине ціле невід’ємне число (а+в)єZo .