2. Порожня, скінченна, нескінченна та універсальна множини. Підмножина. Власні та невласні підмножини даної множини. Рівні та нерівні множини.
2. У математиці розглядають множини, які не містять жодного елемента. Для їхнього позначення використовують спеціальний символ , а називають їх порожніми множинами. Прикладом порожніх множин можуть бути такі: множина людей на Марсі; множина дійсних коренів рівняння х²+3=0. Нехай кількість елементів деякої множини А виражається натуральним числом. Для позначення цієї кількості використовують символ n(А), який читають так: число елементів множини А, або чисельність множини А, або потужність множини А. За кількістю елементів всі множини можна поділити на три групи: 1) порожні множини; 2) скінченні множини – це такі множини, кількість елементів яких можна позначити натуральним числом n(А). Прикладом скінченних множин можуть бути такі: множина цифр десяткової системи числення; множина студентів групи; 3) нескінченні множини – це такі множини, кількість елементів яких не можна виразити натуральним числом. Прикладами нескінченних множин є наступні: множина натуральних чисел; множина дійсних чисел.
Розглянемо кілька множин, які складаються із об’єктів однакової природи, наприклад: множина студентів першого курсу; множина студентів педагогічного факультету РДГУ; множина студентів РДГУ; множина студентів України; множина студентів світу. Як видно із наведеного прикладу, кожна наступна множина включає в себе попередню. Таку множину в математиці називають універсальною й позначають буквою U або інколи – І. Крім того, можна вважати, що існує множина, яка містить в собі всі множини, які тільки існують. По відношенню до однієї і тієї ж множини можна вибрати декілька універсальних множин. Так, для множини студентів другого курсу педагогічного факультету універсальною множиною можуть бути множина всіх студентів факультету, або множина студентів другого курсу РДГУ, або множина студентів м. Рівне. Для наочного зображення універсальної множини використовують прямокутник (див. малюнок № 1.1.).
и
Малюнок №1.1. Зображення універсальної множини.
Розглянемо дві множини А і В, таких, що кожен елемент множини В є елементом множини А, але в множині А є елементи, яких немає в множині В. У цьому випадку говорять, що множина В є підмножиною множини А. Це позначають так: або АВ, а читають: множина В є підмножиною множини А або В включається в А, або А включає В.
Означення: якщо кожен елемент множини В є елементом множини А, але в множині А є хоча б один елемент, яких немає в множині В, то множину В називають власною підмножиною множини А.
Символічно це записують так: або . Цей запис означає, що множина В включається в А і, що ці множини перебувають у відношенні включення. Підмножини бувають власні і невласні. Кожна скінченна не порожня множина А має дві невласні підмножини: 1) порожню (); 2) саму себе (А).
Розглянемо деяку скінченну множину. Домовимося позначати множину всіх підмножин множини А символом Р(А), а число елементів множини Р(А) через n(Р(А)). Нехай А=2, 5, 7 і запишемо всі підмножини цієї множини. Це будуть: В1=, В2=, В3=, В4=, В5, В6, В7= В8. Підмножини В1, В2, В3, В4, В5 і В6– власні, а В7 і В8 – невласні. Таким чином, Р(А)={, А, {2}, {5}, {7}, {2,5}, {2,7}, {5,7}}. Отже, множина А, яка містила три елемента, має вісім підмножин. В математиці доведено, що число підмножин будь-якої скінченої множини визначається за формулою: n(p(A))=2k, де n(p(A)) – число підмножин множини А, k – число елементів множини А, тобто n(A). Оскільки для множини А k=3, то n(p(A))=2³=8.
У теорії множин розглядаються множини, які складаються з одних і тих самих елементів. Про такі множини говорять, що вони рівні.
Означення 1: дві множини А та В називаються рівними, якщо кожна із них є підмножиною іншої, тобто: якщо АВ і ВА, то А=В.
Означення 2: якщо множини складаються з одних і тих самих елементів, то вони називаються рівними.
Означення 3: якщо кожен елемент множини А є елементом множини В і, навпаки, кожен елемент множини В є елементом множини А, то такі множини називаються рівними.
Як довести, що множина А дорівнює множині В? – показати, що кожен елемент множини А є елементом множини В, і, навпаки, кожен елемент множини В є елементом множини А, або показати, що кожна множина є підмножиною іншої, або показати, що множини складаються з одних і тих самих елементів.
3. Відношення між множинами (включення, рівності, перерізу) та їх позначення за допомогою кругів Л.Ейлера та діаграм Ейлера-Венна. Потужність множини. Рівнопотужні (еквівалентні) множини. Скінченні, нескінченні та зчисленні множини. Множини потужності континууму.
3. Ми розглянули означення рівності множин. За його допомогою між множинами можна задати відношення рівності. Які ж ще відношення можуть існувати між множинами? Виявляється, що це можуть бути відношення включення, перетину та рівності або тотожності. Для наочного зображення множин та відношень між ними використовуються спеціальні графічні зображення, на яких множини позначаються кругами або овалами. Такі круги прийнято називати кругами Л.Ейлера (див. малюнок № 1.2.). Якщо універсальну множину зображати прямокутником, а інші множини – кругами, то таке зображення має назву діаграм Ейлера-Венна (див. малюнок № 1.3.). На ньому зображено множину U. Відношення включення зображено на малюнку № 1.4., а відношення перетину – на малюнку № 1.5.
Малюнок № 1.2. Круг Л.Ейлера.
U
Малюнок № 1.3. Діаграма Ейлера-Венна.
Малюнок № 1.4. Відношення включення.
Малюнок № 1.5. Відношення перетину.
Виконаємо мислено таку побудову: розіб’ємо всі скінченні множини на класи, у кожному з яких містяться лише рівночисельні множини і тільки вони. Термін клас тут вживається як синонім терміна «множина». Спільною властивістю всіх скінченних множин певного класу є кількість елементів або чисельність множини кожного класу, тобто натуральне число, яке є потужністю кожної множини певного класу. Хоча природа елементів кожної множини певного класу може бути різноманітною, але всі множини цього класу об’єднує одна спільна властивість, яку для скінченних множин називають рівночисельністю. Виникає запитання: чи можна аналогічно поставитися до нескінченних множин? Іншими словами, чи існують серед нескінченних множин нерівнопотужні множини. Деякий час вважали, що всі нескінченні множини рівнопотужні між собою. У 70-80-х роках ХІХ століття видатний німецький математики Г.Кантор встановив, що серед нескінченних множин є безліч нерівнопотужних між собою множин і що всі нескінченні множини також можна розбити на класи рівнопотужних множин. У результаті дістали узагальнення поняття натурального числа на випадок нескінченних множин у вигляді поняття кардинального числа.
Означення: потужністю або кардинальним числом певної множини М називають той клас Кα рівнопотужних множин, в якому ця множина знаходиться.
Усім множинам одного класу приписується одна й та сама потужність. Позначивши потужність множини М через n(М), дістанемо n(А)=n(В)↔А~В. Якщо в класі Кα містяться скінченні рівнопотужні множини, то потужністю кожної з них є натуральне число, що вказує на кількість елементів цієї множини. Якщо ж клас Кα містить нескінченні рівнопотужні множини, то потужністю кожної з них є кардинальне число n(М).
Таким чином, серед нескінченних множин є безліч нерівнопотужних між собою множин. Для них можна ввести шкалу потужностей аналогічно тому, як це зроблено для скінченних множин. Найменша нескінченна потужність – це той клас, в якому міститься множина натуральних чисел, тобто потужність множини натуральних чисел. Крім того, використовуючи поняття потужності можна більш чітко розглянути питання про скінченні та нескінченні множини. Враховуючи сказане, приймемо наступні означення.
Означення: множина називається нескінченною, якщо із неї можна виділити деяку підмножину, рівнопотужну даній множині.
Таким чином, множина є скінченною, якщо із неї не можна виділити підмножину еквівалентну даній.
Означення: множина називається зчисленною, якщо вона рівнопотужна множині натуральних чисел.
Означення: потужність множини дійсних чисел називають континуумом.
Прикладом зчисленних множин є множина раціональних чисел, множина парних чисел тощо. Для того, щоб перевірити зчисленною чи незчисленною є та чи інша множина, слід спробувати встановити взаємно однозначну відповідність між елементами цієї множини та множиною натуральних чисел.
- Розповсюдження та тиражування без офіційного дозволу заборонено
- Структура залікового кредиту курсу для спеціальності 6.010102 – початкове навчання (3 р.Н.).
- Робочий навчальний план з математики.
- Питання до екзамену за і семестр
- Питання до екзамену за ііі семестр
- Основна література
- Додаткова література
- Методичні посібники
- Модуль 1: «Множини. Відповідності. Відношення.». Змістовний модуль 1.1. «Множини та операції над ними». План.
- Література
- 1. Поняття множини та її елементу, їхні позначення. Загальноприйняті позначення основних числових множин. Способи задання множин.
- 2. Порожня, скінченна, нескінченна та універсальна множини. Підмножина. Власні та невласні підмножини даної множини. Рівні та нерівні множини.
- 4. Операція об’єднання (додавання) множин та основні властивості (закони) цієї операції.
- Малюнок № 1.7. Доведення переставного закону .
- 5. Операція перетину множин та основні властивості (закони) цієї операції.
- Малюнок № 1.8. Перетин множин .
- 6. Операції різниці (віднімання) множин та основні властивості (закони) цієї операції.
- 7. Операція доповнення до даної та універсальної множини та основні властивості (закони) цих операцій.
- Малюнок № 1.18. Доведення закону де Моргана ()'''.
- 8. Поняття розбиття множини на класи (підмножини), що попарно не перетинаються. Розбиття множини на класи за допомогою однієї, двох і трьох властивостей. Класифікації.
- 9. Поняття кортежу та впорядкованої пари. Поняття кортежу довжини n. Рівні пари та кортежі.
- Малюнок № 1.19. Задання декартового добутку множин за допомогою графа.
- Модуль 1: «Множини. Відповідності Відношення.». Змістовний модуль1.2. «Відповідності та відношення.». План.
- Малюнок № 1.20. Граф відповідності.
- 4. Відношення еквівалентності та порядку, їх властивості. Впорядковані множини. Зв'язок відношення еквівалентності з розбиттям множини на класи, що попарно не перетинаються.
- Розв’язання:
- Розв’язання:
- Малюнок № 1.21. Розв’язання задачі 2.
- Розв’язання:
- 2. Розміщення з повтореннями та без повторень.
- Доведення:
- Розв’язання.
- Доведення.
- Розв’язання.
- 3. Перестановки з повтореннями та без повторення.
- Розв’язання.
- Доведення.
- Розв’язання.
- 4. Комбiнацiї та їх властивості.
- Доведення.
- Розв’язання.
- Доведення.
- Доведення.
- Запитання для самоконтролю та завдання для самостійної роботи студентів за модулем 1.
- Модуль 2: «Висловлення. Предикати. Теореми.». Змістовний модуль 2.1. «Поняття.».
- 1. Поняття як форма мислення, зміст і обсяг поняття та зв'язок між ними.
- Діаграма № 2.1. Відношення часткового збігу між поняттями.
- Діаграма № 2.2. Відношення підпорядкування між поняттями.
- 3. Аксіоми. Теореми. Ознаки.
- Означуване поняття
- Видова відмінність
- Модуль 2: «Висловлення. Предикати. Теореми.». Змістовний модуль 2.2. «Висловлення та предикати.».
- 1. Поняття висловлення, їх види (елементарні, складені, рівносильні) та позначення.
- 2. Поняття предиката, його позначення та область визначення. Поняття кванторів існування та загальності, їх позначення та зв'язок між ними.
- 3. Операція заперечення над висловленнями та предикатами. Таблиці істинності. Основні властивості (закони) операції заперечення.
- Діаграма № 2.3. Множина істинності та заперечення даного предиката ā(х).
- 4. Операція кон’юнкції над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції кон’юнкції.
- 4.1. Операція кон'юнкції висловлень.
- 4.2. Операція кон'юнкції предикатів.
- 5. Операція диз’юнкції над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції диз’юнкції.
- 5.1. Операція диз’юнкції над висловленнями.
- 5.2. Диз'юнкція двох предикатів.
- 6. Операція імплікації над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції імплікації.
- 6.1. Операція імплікації висловлень.
- 6.2. Операція імплікації предикатів.
- 7. Операція еквіваленції над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції еквіваленції.
- 7.1. Операція еквіваленції висловлень.
- 7.2. Операція еквіваленції предикатів.
- Діаграма № 2.7. Множина істинності еквіваленції предикатів.
- Розв’язування:
- Розв’язання:
- Запитання для самоконтролю та самостійної роботи студентів за змістовним модулем 2.2.
- Модуль 2: «Висловлення. Предикати. Теореми.». Змістовний модуль 2.3. «Теореми.». План.
- 1. Поняття теореми, її будова. Види теорем (дана, обернена, протилежна, обернена до протилежної, спряжені теореми) та зв'язок між ними.
- 2. Способи доведення теорем (дедуктивний, індуктивний, метод від супротивного тощо).
- Доведення:
- 3. Необхідні та достатні умови.
- 4. Поняття міркування, правильні та неправильні міркування. Перевірка правильності міркувань з допомогою кругів л.Ейлера.
- 1. Короткі історичні відомості про виникнення понять натурального числа і нуля.
- 1. Питання № 1 вивчається самостійно за таким планом:
- 2. Різні підходи до побудови теорії цілих невід’ємних чисел.
- Діаграма № 3.1. Співвідношення між числовими множинами.
- 3. Поняття натурального числа і нуля у теоретико-множинній (кількісній) теорії.
- Малюнок № 3.1.
- 5. Множина цілих невід’ємних чисел та її властивості.
- 6. Визначення суми на множині цілих невід’ємних чисел, її існування та єдиність. Операція додавання та її основні властивості (закони).
- Доведення:
- Доведення:
- 7. Віднімання цілих невід’ємних чисел, зв'язок віднімання з додаванням. Теореми про існування та єдиність різниці.
- Доведення:
- Доведення:
- 8. Визначення добутку на множині цілих невід’ємних чисел, його існування та єдиність. Операція множення та її основні властивості (закони).
- Доведення:
- Доведення:
- Доведення:
- Доведення:
- 10. Операція ділення з остачею на множині цілих невід’ємних чисел.
- Доведення:
- Завдання для самоконтролю та самостійної роботи студентів за змістовним модулем 3.1.
- Модуль ііі. «різні підходи до побудови арифметики цілих невідємних чисел». Змістовний модуль 3.2. «Аксіоматична побудова арифметики цілих невід’ємних чисел.». План
- 1. Аксіоматичний метод у математиці та суть аксіоматичної побудови теорії.
- 2. Властивості аксіоматики (несуперечливість, повнота, незалежність) цілих невід’ємних чисел. Система аксіом Дж.Пеано. Поняття натурального числа і нуля в аксіоматичній теорії.
- 3. Метод математичної індукції.
- Доведення:
- Доведення:
- 4. Аксіоматичне означення додавання цілих невід’ємних чисел в аксіоматичній теорії. Таблиці і закони додавання.
- Доведення:
- Доведення:
- 5. Аксіоматичне означення множення цілих невід’ємних чисел в аксіоматичній теорії. Таблиці і закони множення.
- 6. Відношення порядку на множині цілих невід’ємних чисел.
- 7. Означення віднімання і ділення цілих невід’ємних чисел в аксіоматичній теорії.
- Модуль ііі. «різні підходи до побудови арифметики цілих невідємних чисел». Змістовний модуль 3.3. «Натуральне число як результат вимірювання величини.». План.
- 1. Поняття натурального ряду чисел та його відрізка. Лічба елементів скінченої множини. Порядкові і кількісні натуральні числа.
- 2. Порівняння відрізків, дії над відрізками. Натуральне число як результат вимірювання величини. Натуральне число як міра величини. Натуральне число як міра відрізка.
- Малюнок № 3.6. Різниця а-b відрізків.
- 3. Означення операцій додавання і віднімання чисел, що розглядаються як міри відрізків. Трактування множення і ділення, які розглядаються як міри відрізків.
- Модуль іу. «системи числення. Подільність чисел.». Змістовний модуль 4.1. «Системи числення.». План.
- 1. Позиційні та непозиційні системи числення, запис чисел у позиційних і непозиційних системах числення.
- 2. Алгоритми арифметичних операцій над цілими невід’ємними числами у десятковій системі числення.
- Розв’язання:
- Розв’язання:
- Розв’язання:
- Модуль іу. «системи числення. Подільність чисел.». Змістовний модуль 4.2. «Подільність цілих невід’ємних чисел.». План.
- 1. Поняття «відношення подільності» та його властивості.
- 2. Теореми про подільність суми, різниці і добутку цілих невід’ємних чисел на натуральні числа.
- 3. Загальна ознака подільності б.Паскаля. Ознаки подільності цілих невід’ємних чисел на 2, 3, 4, 5, 9, 25.
- 4. Прості і складені числа. Нескінченність множини простих чисел. Решето Ератосфена.
- 5. Основна теорема арифметики цілих невід’ємних чисел.
- Розв’язання:
- 6. Дільники і кратні. Спільні дільники і спільні кратні. Найбільший спільний дільник (нсд) і найменше спільне кратне (нск), їх властивості.
- 7. Обчислення нсд і нск способом канонічного розкладу на прості множники та за алгоритмом Евкліда.
- Розв’язання:
- 8. Ознаки подільності на складені числа.
- Завдання для самоконтролю та самостійної роботи студентів.
- Модуль у. «розширення поняття про число». Змістовний модуль 5.1. «Цілі числа.». План.
- 1. Задача розширення поняття про число. Необхідність розширення множини натуральних чисел.
- 2. Побудова множини цілих чисел. Зображення цілих чисел на числовій прямій.
- Малюнок № 5.1. Зображення точок а(4) і в(-6).
- Розв’язання:
- 3. Властивості множини цілих чисел.
- Доведення:
- 4. Додавання, віднімання, множення і ділення цілих чисел. Теореми про існування та єдиність цих операцій. Закони операцій додавання і множення.
- Модуль у. «розширення поняття про число». Змістовний модуль 5.2. «Раціональні числа.». План.
- 1. Необхідність розширення множини цілих чисел.
- 2. Поняття дробу. Рівність дробів. Основна властивість дробів. Скорочення дробів та їх зведення до спільного знаменника. Нескоротні дроби.
- Доведення.
- 3. Невід’ємні раціональні числа та їх властивості.
- Доведення.
- Доведення.
- 4. Відношення порядку на множині невід’ємних раціональних чисел.
- Доведення.
- Доведення.
- 5. Додавання і віднімання невід’ємних раціональних чисел. Теореми про існування та єдиність суми і різниці. Властивості (закони) додавання.
- Доведення.
- Доведення.
- Доведення.
- 6. Множення і ділення невід’ємних раціональних чисел. Теореми про існування та єдиність добутку та частки. Властивості (закони) множення.
- Доведення.
- Доведення.
- Доведення.
- 7. Властивості множини невід’ємних раціональних чисел.
- 8. Десяткові дроби, їх порівняння, операції над ними. Перетворення десяткових дробів у звичайні та звичайних у десяткові.
- Доведення.
- 9. Додатні раціональні числа як нескінченні періодичні десяткові дроби. Чисті та мішані періодичні дроби та їх перетворення у звичайні.
- Розв’язання.
- 10. Множина раціональних чисел, модуль раціонального числа, операції над раціональними числами. Властивості множини раціональних чисел.
- Діаграма № 5.1. Співвідношення між числовими множинами q, z, n.
- Доведення.
- Малюнок № 5.2.
- 2. Додатні ірраціональні числа. Невід’ємні дійсні числа.
- Діаграма № 5.2. Співвідношення між числовими множинами n, z, q, r.
- 3. Відношення порядку на множині дійсних чисел.
- Розв’язання.
- Розв’язання.
- 4. Додавання і віднімання додатних дійсних чисел.
- Розв’язання.
- Розв’язання.
- Розв’язання.
- 5. Множення та ділення додатних дійсних чисел.
- Розв’язання.
- Розв’язання.
- 6. Множина дійсних чисел та її властивості.
- Запитання для самоконтролю та самостійної роботи студентів за модулем у.
- Модуль 6. : «вирази. Рівняння. Нерівності. Функції». Змістовний модуль 6.1. «Вирази.».
- 1. Числові вирази та їх види. Значення числового виразу та порядок обчислення значень числового виразу.
- Розв’язання:
- 2. Числові рівності та нерівності, їх властивості.
- 3. Вираз із змінною та його область визначення.
- 4. Тотожні перетворення виразів. Тотожності. Виведення основних тотожностей.
- Модуль 6. : «вирази. Рівняння. Нерівності. Функції». Змістовний модуль 6.2. «Рівняння, їх системи і сукупності.».
- Розв’язання:
- 2. Рівносильні рівняння. Теореми про рівносильність рівнянь.
- Розв’язання:
- Доведення:
- Розв’язання:
- 3. Рівняння з двома змінними. Рівняння лінії. Рівняння прямої та їх види.
- Малюнок № 6.1. Графік рівняння кола.
- Малюнок № 6.3.
- Малюнок № 6.4.
- 4. Системи та сукупності рівнянь з двома змінними та способи (алгебраїчні та графічні) їх розв’язування.
- Розв’язання.
- Розв’язання.
- Розв’язання.
- 5. Застосування рівнянь та їх систем до розв’язування текстових задач.
- Модуль 6. : «вирази. Рівняння. Нерівності. Функції». Змістовний модуль 6.3. «Нерівності, їх системи і сукупності.».
- 2. Рівносильні нерівності. Теореми про рівносильність нерівностей.
- Доведення.
- Доведення.
- 3. Системи та сукупності нерівностей з однією змінною та способи їх розв’язування. Нерівності та системи нерівностей з двома змінними, графічний спосіб їх розв’язування.
- Розв’язання.
- Модуль 6. : «вирази. Рівняння. Нерівності. Функції». Змістовний модуль 6.4. «Функції.».
- 1. Поняття числової функції, способи їх задання, графік та властивості.
- 2. Пряма пропорційність, її властивості та графік.
- 3. Лінійна функція, її властивості та графік.
- 4. Обернена пропорційність, її властивості та графік.
- 5*. Квадратична функція, її властивості та графік.
- 6*. Операції над функціями та графіками, перетворення графіків.
- Розв’язання.
- Розв’язання.
- Розв’язання.
- Розв’язання.
- Запитання для самоконтролю та самостійної роботи студентів.
- Модуль 7: «елементи геометрії. Величини.». Змістовний модуль 7.1. «Геометричні побудови на площині.».
- 1. Короткі історичні відомості про виникнення та розвиток геометрії. Поняття про аксіоматичний метод побудови геометрії та історію його розвитку в геометрії.
- 2. Основні геометричні побудови циркулем і лінійкою.
- Побудова кута, що дорівнює даному (див. Малюнок № 7.1.).
- Поділ відрізка пополам.
- Малюнок № 7.2. Поділ кута пополам.
- Побудова прямої, яка проходить через дану на ній точку, перпендикулярно до даної прямої (малюнок № 7.4.).
- Побудова трикутника за трьома сторонами.
- 3. Основні методи геометричних побудов (метод гмт, методи осьової та центральної симетрії, метод паралельного перенесення, метод гомотетії, алгебраїчний метод).
- Метод геометричних місць точок.
- Малюнок № 7.5. Метод симетрії відносно прямої.
- Метод повороту площини навколо точки.
- Метод симетрії відносно даної точки.
- Метод паралельного перенесення.
- Метод гомотетії.
- Алгебраїчний метод.
- 4. Побудова правильних многогранників.
- 2. Правильні многогранники та їх види.
- Доведення:
- 3. Поняття тіла обертання, їх види (циліндр, конус, куля. Сфера) та їх зображення на площині.
- Модуль 7: «елементи геометрії. Величини.». Змістовний модуль 7.3. «Величини та їх вимірювання.».
- 1. Поняття величини та її вимірювання. Відображення властивостей реального світу через поняття величини. Види величин.
- 2. Поняття довжини відрізка та способів його вимірювання. Основні властивості довжини. Одиниці вимірювання довжини та співвідношення між ними.
- 3. Поняття площі плоскої фігури, її основні властивості та способи вимірювання. Рівновеликі та рівноскладені фігури. Одиниці вимірювання площі та співвідношення між ними.
- Малюнок № 7.10.. Квадрати нульового рангу.
- Малюнок № 7.11. Фігури ф і f.
- Доведення:
- 4. Виведення формул для знаходження площі паралелограма, трикутника, трапеції. Формули для знаходження площ поверхонь просторових геометричних фігур.
- Малюнок № 7.12.
- Малюнок № 7.13.
- Доведення:
- Малюнок № 7.14.
- Доведення:
- Доведення:
- Малюнок № 7.16.
- 5*. Поняття об’єму тіла, його властивостей, способів його вимірювання, одиниць вимірювання та співвідношень між ними. Об’єми многогранників та тіл обертання.
- Запитання для самоконтролю та самостійної роботи студентів.