logo
Лекції з матем - заоч

Доведення:

Розглянемо два рівноскладені многокутники М і К. Відповідно до означення вони розкладуться на однакове число попарно рівних частин: М=М123+...+Мn і К=К123+...+Кn. Знайдемо площі многокутників М і К. S(М)=S(М1)+S(М2)+S(М3)+...+S(Мn) і S(К)=S(К1)+S(К2)+S(К3)+...+S(Кn). Оскільки многокутники М1, М2, М3,...,Мn і К1, К2, К3,...,Кn попарно рівні, то S(М1), S(М2), S(М3),...,S(Мn) і S(К1), S(К2), S(К3),...,S(Кn) – попарно однакові, а тому S(М)=S(К). Теорему доведено.

Теорема 2: будь-які два рівновеликі многокутники рівноскладені.

Доведення цієї теореми опустимо, бо воно аналогічне до попередньої. Зазначимо, що обидві теореми можна об’єднати в одну: “Для того, щоб будь-які два многокутники були рівновеликими, необхідно і достатньо, щоб вони були рівноскладеними”. Доведені і сформульовані теореми нададуть можливість значно спростити обґрунтування формул для обчислення площ окремих видів многокутників.

Оскільки основною одиницею вимірювання довжини у системі “SI” є 1 м, то основною одиницею вимірювання площі є 1 кв. м або 1 м2. Похідними одиницями вимірювання площі є наступні одиниці: 1 кв. дм (дм2)=0,01 м2=100 см2; 1 кв. см (см2)=0,0001 м2=100 мм2; 1 кв. мм (мм2)=0,000001 м2; 1 квадратний декаметр або 1 ар (а)=100 м2=0,01 га; 1 квадратний гектометр або 1 гектар (га)=10000 м2; 1 кв. км (км2)=1000000 м2. Аналогічно можна ввести позначення старовинних мір площі та встановити їхні співвідношення із сучасними мірами площі.