logo
Лекції з матем - заоч

4. Комбiнацiї та їх властивості.

4. Розглянемо множину М={a1, a2, a3,...,an}, де n(М)=n, i з’ясуємо, скільки k-елементних підмножин, де k≤n можна вибрати в цій множині М. Оскільки не вказано, що ці підмножини впорядковані, то одна підмножина повинна відрізнятися від другої принаймні одним елементом, а порядок розміщення елементів не має значення. В комбінаториці такі підмножини називаються комбінаціями із даних n елементів по k елементів, а їх число позначають символом Сnk. Цей символічний запис читають так: число комбінацій із n елементів по k елементів.

Означення: будь-яка k елементна підмножина АМ даної n елементної множини М називається комбінацією із n елементів по k.

Із наведеного означення випливає, що комбінація – це множина, а тому одна комбінація від іншої відрізняється або принаймні одним елементом, або складом елементів. Одне розміщення із елементів множини М вiдрiзняється від іншого розміщення із елементів цієї ж множини або принаймні одним елементом, або складом елементів, або порядком їх розташування. Одна перестановка відрізнялася від іншої перестановки елементів цієї ж множини М порядком розташування елементів. Виведемо формулу для обчислення числа комбінацій.

Теорема: число комбінацій із даних n елементів по k елементів (k≤n) дорівнює дробові, чисельник якого дорівнює добутку k послідовних натуральних чисел, із яких найбільшим є n, а знаменник дорівнює добутку перших k натуральних чисел.

Символічно формула для обчислення числа комбінацій із даних n елементів по k елементів запишеться так: Сnk=(n•(n-1)•(n-2)•...•(n-k+1))/(1•2•3•...•k)=n!/((n-k)!k!).