logo
Лекції з матем - заоч

Доведення.

Розглянемо скінченну множину Х таку, що n(Х)=n. Будемо утворювати із елементів цієї множини кортежі довжиною k, де k≤n. Оскільки в множині Х є n елементів, то перший компонент кортежу можна вибрати n способами, другий – n-1 способом, третій - n-2 способами, і нарешті k-й – n-(k-1)=n-k+1 – способом. Згідно правила добутку число Аnk таких кортежів довжини k буде дорівнювати n(n-1)(n-2)...(n-k+1). Отже, Аnk=n(n-1)(n-2)...(n-k+1). Теорему доведено.

У математиці добуток всіх послідовних чисел від 1 до деякого числа k прийнято позначати спеціальним символом k! та називати k-факторіал. Наприклад: 3!=1•2•3=6; 5!=1•2•3•4•5=120; 7!=1•2•3•4•5•6•7=5040; k!=1•2•3•...•k. У математиці прийнято вважати, що 0!=1 i 1!=1. Використовуючи ці позначення, спробуємо перетворити формулу для знаходження числа розміщень. У формулі Аnk є добуток всіх натуральних чисел від n до n-k+1, але немає добутку від 1 до n-k. Щоб одержати цей добуток i не змінити значення формули, домножимо й поділимо вираз у правій частині формули на добуток послідовних натуральних чисел від 1 до n-k. Аnk=(n•(n-1)•(n-2)•...•(n-k+1)(n-k)•(n-k-1)•…3•2•1)/((n-k)•(n-k-1)•…3•2•1)= n!/(n-k)!. Це зроблено тому, що в чисельнику є добуток всіх послідовних чисел від 1 до n. Отже, чисельник можна записати як n!. У знаменнику є добуток всіх послідовних натуральних чисел від 1 до n-k, то запишемо його з використанням факторіалу, тобто (n-k)!.

Покажемо застосування виведених формул для обчислення числа розміщень на прикладі наступної задачі.

Задача: скільки двозначних чисел можна записати за допомогою цифр 2, 4, 5, 6, 7 так, щоб цифри не повторювалися?