6.1. Операція імплікації висловлень.
6.1. Ми вже розглянули три операції над висловленнями та предикатами. Кожній з них, певним чином, відповідали частка не чи сполучники: і, або. У математиці досить часто використовуються словосполучення «якщо …, то …», слова «випливає», «слідує» тощо. Розглянемо два висловлення: а=„число 2 просте” і в=„число 2 – парне”. Утворимо з цих двох простих висловлень за допомогою словосполучення «якщо …, то …» або слова «слідує» нове висловлення: „якщо число 2 – просте, то воно парне” або «із того, що число 2 – просте, слідує (випливає), що воно парне». Воно є складеним (Чому?). У математичній логіці таке нове висловлення називають імплікацією (грецьк. Implico – тісно зв'язую) даних висловлень і позначають так: а→b або аb. Символічний запис а→b або аb читають так: „якщо а, то b”, або „з а слідує (випливає) b”, або „імплікація а і b”, або „а імплікує в b”. Тепер сформулюємо строге математичне означення цієї операції над висловленнями.
Означення: імплікацією двох висловлень а і b називається таке нове висловлення а→b, яке хибне тоді і тільки тоді, коли висловлення а істинне, а висловлення b – хибне, і істинне в усіх інших випадках.
За допомогою таблиці істинності операцію імплікації можна задати так (див. таблицю №2.7.).
а | в | а→b |
0 | 0 | 1 |
0 | 1 | 1 |
1 | 0 | 0 |
1 | 1 | 1 |
Таблиця № 2.7. Таблиця істинності для операції імплікації висловлень.
В імплікації а→b висловлення а називають або умовою, або посилкою, або основою імплікації, а висловлення b – висновком або наслідком імплікації. Зв'язок між операцією імплікації та операціями заперечення та диз'юнкції задається за допомогою такої формули: а→b=āв. Доведемо її за допомогою таблиці істинності (див. таблицю № 2.8.). Порівнюючи 3 і 5 стовпчики, бачимо, що вони набувають однакових значень істинності при будь-яких наборах значень істинності висловлень а і b.
Р озглянемо імплікацію: а→b=„якщо число закінчується на 0, то воно ділиться на 5”.Домовимося називати її даною або прямою імплікацією. Переставивши місцями умову та висновок, одержимо нову імплікацію b→а=„якщо число ділиться на 5, то воно закінчується нулем”. Така імплікація називається оберненою до даної. Замінимо в даній імплікації а→b умову і висновок їх запереченнями. Отримаємо нову імплікаціюā→b=„якщо число не закінчується на 0, то воно не ділиться на 5”, яку називають імплікацією, протилежною до даної. Поміняємо в останній імплікації місцями умову та висновок. Тоді одержимо імплікаціюв→ā=„якщо число не ділиться на 5, то воно не закінчується нулем”. Цю імплікацію називають імплікацією протилежною до оберненої або оберненою до протилежної. Таким чином, маємо чотири види імплікації: 1) а→b – пряма; 2) b→а – обернена до даної; 3) ā→b - протилежна до прямої; 4)b→ā - протилежна до оберненої або обернена до протилежної. Виникає запитання: як ці види імплікацій пов’язані між собою? Для виявлення зв'язку між імплікаціями побудуємо таблицю істинності (див. таблицю № 2.9.).
а | в | а→b | ā | ā в |
0 | 0 | 1 | 1 | 1 |
0 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 1 |
Таблиця № 2.8. Доведення формули а→b=āв.
а |
в |
а |
b |
а →b |
b→а |
а→b |
b →а |
0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
Таблиця № 2.9. Доведення рівносильності різних видів імплікацій.
А налізуючи побудовану таблицю, бачимо, що значення 5-го і 8-го стовпців приймають однакові значення істинності при всіх наборах значень істинності висловлень, що до них входять. Саме тому можна твердити, що справедливі такі рівності: а→b=b→а та b→а=а→b. Таким чином, маємо дві пари рівносильних між собою імплікацій а→b=b→а та b→а=а→b. Це дає змогу визначати істинність не всіх чотирьох імплікацій, а лише двох (по одній із кожної пари), бо істинність двох інших випливатиме із рівносильності пар імплікацій.
- Розповсюдження та тиражування без офіційного дозволу заборонено
- Структура залікового кредиту курсу для спеціальності 6.010102 – початкове навчання (3 р.Н.).
- Робочий навчальний план з математики.
- Питання до екзамену за і семестр
- Питання до екзамену за ііі семестр
- Основна література
- Додаткова література
- Методичні посібники
- Модуль 1: «Множини. Відповідності. Відношення.». Змістовний модуль 1.1. «Множини та операції над ними». План.
- Література
- 1. Поняття множини та її елементу, їхні позначення. Загальноприйняті позначення основних числових множин. Способи задання множин.
- 2. Порожня, скінченна, нескінченна та універсальна множини. Підмножина. Власні та невласні підмножини даної множини. Рівні та нерівні множини.
- 4. Операція об’єднання (додавання) множин та основні властивості (закони) цієї операції.
- Малюнок № 1.7. Доведення переставного закону .
- 5. Операція перетину множин та основні властивості (закони) цієї операції.
- Малюнок № 1.8. Перетин множин .
- 6. Операції різниці (віднімання) множин та основні властивості (закони) цієї операції.
- 7. Операція доповнення до даної та універсальної множини та основні властивості (закони) цих операцій.
- Малюнок № 1.18. Доведення закону де Моргана ()'''.
- 8. Поняття розбиття множини на класи (підмножини), що попарно не перетинаються. Розбиття множини на класи за допомогою однієї, двох і трьох властивостей. Класифікації.
- 9. Поняття кортежу та впорядкованої пари. Поняття кортежу довжини n. Рівні пари та кортежі.
- Малюнок № 1.19. Задання декартового добутку множин за допомогою графа.
- Модуль 1: «Множини. Відповідності Відношення.». Змістовний модуль1.2. «Відповідності та відношення.». План.
- Малюнок № 1.20. Граф відповідності.
- 4. Відношення еквівалентності та порядку, їх властивості. Впорядковані множини. Зв'язок відношення еквівалентності з розбиттям множини на класи, що попарно не перетинаються.
- Розв’язання:
- Розв’язання:
- Малюнок № 1.21. Розв’язання задачі 2.
- Розв’язання:
- 2. Розміщення з повтореннями та без повторень.
- Доведення:
- Розв’язання.
- Доведення.
- Розв’язання.
- 3. Перестановки з повтореннями та без повторення.
- Розв’язання.
- Доведення.
- Розв’язання.
- 4. Комбiнацiї та їх властивості.
- Доведення.
- Розв’язання.
- Доведення.
- Доведення.
- Запитання для самоконтролю та завдання для самостійної роботи студентів за модулем 1.
- Модуль 2: «Висловлення. Предикати. Теореми.». Змістовний модуль 2.1. «Поняття.».
- 1. Поняття як форма мислення, зміст і обсяг поняття та зв'язок між ними.
- Діаграма № 2.1. Відношення часткового збігу між поняттями.
- Діаграма № 2.2. Відношення підпорядкування між поняттями.
- 3. Аксіоми. Теореми. Ознаки.
- Означуване поняття
- Видова відмінність
- Модуль 2: «Висловлення. Предикати. Теореми.». Змістовний модуль 2.2. «Висловлення та предикати.».
- 1. Поняття висловлення, їх види (елементарні, складені, рівносильні) та позначення.
- 2. Поняття предиката, його позначення та область визначення. Поняття кванторів існування та загальності, їх позначення та зв'язок між ними.
- 3. Операція заперечення над висловленнями та предикатами. Таблиці істинності. Основні властивості (закони) операції заперечення.
- Діаграма № 2.3. Множина істинності та заперечення даного предиката ā(х).
- 4. Операція кон’юнкції над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції кон’юнкції.
- 4.1. Операція кон'юнкції висловлень.
- 4.2. Операція кон'юнкції предикатів.
- 5. Операція диз’юнкції над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції диз’юнкції.
- 5.1. Операція диз’юнкції над висловленнями.
- 5.2. Диз'юнкція двох предикатів.
- 6. Операція імплікації над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції імплікації.
- 6.1. Операція імплікації висловлень.
- 6.2. Операція імплікації предикатів.
- 7. Операція еквіваленції над висловленнями та предикатами. Її таблиця істинності. Основні властивості (закони) операції еквіваленції.
- 7.1. Операція еквіваленції висловлень.
- 7.2. Операція еквіваленції предикатів.
- Діаграма № 2.7. Множина істинності еквіваленції предикатів.
- Розв’язування:
- Розв’язання:
- Запитання для самоконтролю та самостійної роботи студентів за змістовним модулем 2.2.
- Модуль 2: «Висловлення. Предикати. Теореми.». Змістовний модуль 2.3. «Теореми.». План.
- 1. Поняття теореми, її будова. Види теорем (дана, обернена, протилежна, обернена до протилежної, спряжені теореми) та зв'язок між ними.
- 2. Способи доведення теорем (дедуктивний, індуктивний, метод від супротивного тощо).
- Доведення:
- 3. Необхідні та достатні умови.
- 4. Поняття міркування, правильні та неправильні міркування. Перевірка правильності міркувань з допомогою кругів л.Ейлера.
- 1. Короткі історичні відомості про виникнення понять натурального числа і нуля.
- 1. Питання № 1 вивчається самостійно за таким планом:
- 2. Різні підходи до побудови теорії цілих невід’ємних чисел.
- Діаграма № 3.1. Співвідношення між числовими множинами.
- 3. Поняття натурального числа і нуля у теоретико-множинній (кількісній) теорії.
- Малюнок № 3.1.
- 5. Множина цілих невід’ємних чисел та її властивості.
- 6. Визначення суми на множині цілих невід’ємних чисел, її існування та єдиність. Операція додавання та її основні властивості (закони).
- Доведення:
- Доведення:
- 7. Віднімання цілих невід’ємних чисел, зв'язок віднімання з додаванням. Теореми про існування та єдиність різниці.
- Доведення:
- Доведення:
- 8. Визначення добутку на множині цілих невід’ємних чисел, його існування та єдиність. Операція множення та її основні властивості (закони).
- Доведення:
- Доведення:
- Доведення:
- Доведення:
- 10. Операція ділення з остачею на множині цілих невід’ємних чисел.
- Доведення:
- Завдання для самоконтролю та самостійної роботи студентів за змістовним модулем 3.1.
- Модуль ііі. «різні підходи до побудови арифметики цілих невідємних чисел». Змістовний модуль 3.2. «Аксіоматична побудова арифметики цілих невід’ємних чисел.». План
- 1. Аксіоматичний метод у математиці та суть аксіоматичної побудови теорії.
- 2. Властивості аксіоматики (несуперечливість, повнота, незалежність) цілих невід’ємних чисел. Система аксіом Дж.Пеано. Поняття натурального числа і нуля в аксіоматичній теорії.
- 3. Метод математичної індукції.
- Доведення:
- Доведення:
- 4. Аксіоматичне означення додавання цілих невід’ємних чисел в аксіоматичній теорії. Таблиці і закони додавання.
- Доведення:
- Доведення:
- 5. Аксіоматичне означення множення цілих невід’ємних чисел в аксіоматичній теорії. Таблиці і закони множення.
- 6. Відношення порядку на множині цілих невід’ємних чисел.
- 7. Означення віднімання і ділення цілих невід’ємних чисел в аксіоматичній теорії.
- Модуль ііі. «різні підходи до побудови арифметики цілих невідємних чисел». Змістовний модуль 3.3. «Натуральне число як результат вимірювання величини.». План.
- 1. Поняття натурального ряду чисел та його відрізка. Лічба елементів скінченої множини. Порядкові і кількісні натуральні числа.
- 2. Порівняння відрізків, дії над відрізками. Натуральне число як результат вимірювання величини. Натуральне число як міра величини. Натуральне число як міра відрізка.
- Малюнок № 3.6. Різниця а-b відрізків.
- 3. Означення операцій додавання і віднімання чисел, що розглядаються як міри відрізків. Трактування множення і ділення, які розглядаються як міри відрізків.
- Модуль іу. «системи числення. Подільність чисел.». Змістовний модуль 4.1. «Системи числення.». План.
- 1. Позиційні та непозиційні системи числення, запис чисел у позиційних і непозиційних системах числення.
- 2. Алгоритми арифметичних операцій над цілими невід’ємними числами у десятковій системі числення.
- Розв’язання:
- Розв’язання:
- Розв’язання:
- Модуль іу. «системи числення. Подільність чисел.». Змістовний модуль 4.2. «Подільність цілих невід’ємних чисел.». План.
- 1. Поняття «відношення подільності» та його властивості.
- 2. Теореми про подільність суми, різниці і добутку цілих невід’ємних чисел на натуральні числа.
- 3. Загальна ознака подільності б.Паскаля. Ознаки подільності цілих невід’ємних чисел на 2, 3, 4, 5, 9, 25.
- 4. Прості і складені числа. Нескінченність множини простих чисел. Решето Ератосфена.
- 5. Основна теорема арифметики цілих невід’ємних чисел.
- Розв’язання:
- 6. Дільники і кратні. Спільні дільники і спільні кратні. Найбільший спільний дільник (нсд) і найменше спільне кратне (нск), їх властивості.
- 7. Обчислення нсд і нск способом канонічного розкладу на прості множники та за алгоритмом Евкліда.
- Розв’язання:
- 8. Ознаки подільності на складені числа.
- Завдання для самоконтролю та самостійної роботи студентів.
- Модуль у. «розширення поняття про число». Змістовний модуль 5.1. «Цілі числа.». План.
- 1. Задача розширення поняття про число. Необхідність розширення множини натуральних чисел.
- 2. Побудова множини цілих чисел. Зображення цілих чисел на числовій прямій.
- Малюнок № 5.1. Зображення точок а(4) і в(-6).
- Розв’язання:
- 3. Властивості множини цілих чисел.
- Доведення:
- 4. Додавання, віднімання, множення і ділення цілих чисел. Теореми про існування та єдиність цих операцій. Закони операцій додавання і множення.
- Модуль у. «розширення поняття про число». Змістовний модуль 5.2. «Раціональні числа.». План.
- 1. Необхідність розширення множини цілих чисел.
- 2. Поняття дробу. Рівність дробів. Основна властивість дробів. Скорочення дробів та їх зведення до спільного знаменника. Нескоротні дроби.
- Доведення.
- 3. Невід’ємні раціональні числа та їх властивості.
- Доведення.
- Доведення.
- 4. Відношення порядку на множині невід’ємних раціональних чисел.
- Доведення.
- Доведення.
- 5. Додавання і віднімання невід’ємних раціональних чисел. Теореми про існування та єдиність суми і різниці. Властивості (закони) додавання.
- Доведення.
- Доведення.
- Доведення.
- 6. Множення і ділення невід’ємних раціональних чисел. Теореми про існування та єдиність добутку та частки. Властивості (закони) множення.
- Доведення.
- Доведення.
- Доведення.
- 7. Властивості множини невід’ємних раціональних чисел.
- 8. Десяткові дроби, їх порівняння, операції над ними. Перетворення десяткових дробів у звичайні та звичайних у десяткові.
- Доведення.
- 9. Додатні раціональні числа як нескінченні періодичні десяткові дроби. Чисті та мішані періодичні дроби та їх перетворення у звичайні.
- Розв’язання.
- 10. Множина раціональних чисел, модуль раціонального числа, операції над раціональними числами. Властивості множини раціональних чисел.
- Діаграма № 5.1. Співвідношення між числовими множинами q, z, n.
- Доведення.
- Малюнок № 5.2.
- 2. Додатні ірраціональні числа. Невід’ємні дійсні числа.
- Діаграма № 5.2. Співвідношення між числовими множинами n, z, q, r.
- 3. Відношення порядку на множині дійсних чисел.
- Розв’язання.
- Розв’язання.
- 4. Додавання і віднімання додатних дійсних чисел.
- Розв’язання.
- Розв’язання.
- Розв’язання.
- 5. Множення та ділення додатних дійсних чисел.
- Розв’язання.
- Розв’язання.
- 6. Множина дійсних чисел та її властивості.
- Запитання для самоконтролю та самостійної роботи студентів за модулем у.
- Модуль 6. : «вирази. Рівняння. Нерівності. Функції». Змістовний модуль 6.1. «Вирази.».
- 1. Числові вирази та їх види. Значення числового виразу та порядок обчислення значень числового виразу.
- Розв’язання:
- 2. Числові рівності та нерівності, їх властивості.
- 3. Вираз із змінною та його область визначення.
- 4. Тотожні перетворення виразів. Тотожності. Виведення основних тотожностей.
- Модуль 6. : «вирази. Рівняння. Нерівності. Функції». Змістовний модуль 6.2. «Рівняння, їх системи і сукупності.».
- Розв’язання:
- 2. Рівносильні рівняння. Теореми про рівносильність рівнянь.
- Розв’язання:
- Доведення:
- Розв’язання:
- 3. Рівняння з двома змінними. Рівняння лінії. Рівняння прямої та їх види.
- Малюнок № 6.1. Графік рівняння кола.
- Малюнок № 6.3.
- Малюнок № 6.4.
- 4. Системи та сукупності рівнянь з двома змінними та способи (алгебраїчні та графічні) їх розв’язування.
- Розв’язання.
- Розв’язання.
- Розв’язання.
- 5. Застосування рівнянь та їх систем до розв’язування текстових задач.
- Модуль 6. : «вирази. Рівняння. Нерівності. Функції». Змістовний модуль 6.3. «Нерівності, їх системи і сукупності.».
- 2. Рівносильні нерівності. Теореми про рівносильність нерівностей.
- Доведення.
- Доведення.
- 3. Системи та сукупності нерівностей з однією змінною та способи їх розв’язування. Нерівності та системи нерівностей з двома змінними, графічний спосіб їх розв’язування.
- Розв’язання.
- Модуль 6. : «вирази. Рівняння. Нерівності. Функції». Змістовний модуль 6.4. «Функції.».
- 1. Поняття числової функції, способи їх задання, графік та властивості.
- 2. Пряма пропорційність, її властивості та графік.
- 3. Лінійна функція, її властивості та графік.
- 4. Обернена пропорційність, її властивості та графік.
- 5*. Квадратична функція, її властивості та графік.
- 6*. Операції над функціями та графіками, перетворення графіків.
- Розв’язання.
- Розв’язання.
- Розв’язання.
- Розв’язання.
- Запитання для самоконтролю та самостійної роботи студентів.
- Модуль 7: «елементи геометрії. Величини.». Змістовний модуль 7.1. «Геометричні побудови на площині.».
- 1. Короткі історичні відомості про виникнення та розвиток геометрії. Поняття про аксіоматичний метод побудови геометрії та історію його розвитку в геометрії.
- 2. Основні геометричні побудови циркулем і лінійкою.
- Побудова кута, що дорівнює даному (див. Малюнок № 7.1.).
- Поділ відрізка пополам.
- Малюнок № 7.2. Поділ кута пополам.
- Побудова прямої, яка проходить через дану на ній точку, перпендикулярно до даної прямої (малюнок № 7.4.).
- Побудова трикутника за трьома сторонами.
- 3. Основні методи геометричних побудов (метод гмт, методи осьової та центральної симетрії, метод паралельного перенесення, метод гомотетії, алгебраїчний метод).
- Метод геометричних місць точок.
- Малюнок № 7.5. Метод симетрії відносно прямої.
- Метод повороту площини навколо точки.
- Метод симетрії відносно даної точки.
- Метод паралельного перенесення.
- Метод гомотетії.
- Алгебраїчний метод.
- 4. Побудова правильних многогранників.
- 2. Правильні многогранники та їх види.
- Доведення:
- 3. Поняття тіла обертання, їх види (циліндр, конус, куля. Сфера) та їх зображення на площині.
- Модуль 7: «елементи геометрії. Величини.». Змістовний модуль 7.3. «Величини та їх вимірювання.».
- 1. Поняття величини та її вимірювання. Відображення властивостей реального світу через поняття величини. Види величин.
- 2. Поняття довжини відрізка та способів його вимірювання. Основні властивості довжини. Одиниці вимірювання довжини та співвідношення між ними.
- 3. Поняття площі плоскої фігури, її основні властивості та способи вимірювання. Рівновеликі та рівноскладені фігури. Одиниці вимірювання площі та співвідношення між ними.
- Малюнок № 7.10.. Квадрати нульового рангу.
- Малюнок № 7.11. Фігури ф і f.
- Доведення:
- 4. Виведення формул для знаходження площі паралелограма, трикутника, трапеції. Формули для знаходження площ поверхонь просторових геометричних фігур.
- Малюнок № 7.12.
- Малюнок № 7.13.
- Доведення:
- Малюнок № 7.14.
- Доведення:
- Доведення:
- Малюнок № 7.16.
- 5*. Поняття об’єму тіла, його властивостей, способів його вимірювання, одиниць вимірювання та співвідношень між ними. Об’єми многогранників та тіл обертання.
- Запитання для самоконтролю та самостійної роботи студентів.