logo
Лекції з матем - заоч

Метод повороту площини навколо точки.

Означення: поворотом площини навколо даної точки на орієнтований кут α називається таке перетворення, при якому кожній точці А відповідає така точка А′ цієї ж площини так, що: 1) АО=ОА′; 2) кут АОА′=α і однаково з ним орієнтований. Точку О називають центром повороту, а кут α – кутом повороту.

Для позначення повороту використовують символ RªО, а тому символічні записи А′=RªО(A) і А′B′=RªО(AВ) читають відповідно так: образом точки А у перетворенні повороту навколо точки О на кут α є точка А′; образом відрізка АВ у перетворенні повороту навколо точки О на кут α є відрізок А′В′. Поворот вважається повністю визначеним, коли відомо т. О і кут α, або коли відомо точки О, А і А′, або коли відомо дві пари відповідних точок. Кут α може набувати додатних значень (коли поворот здійснюється проти руху годинникової стрілки) і від’ємних (коли поворот здійснюється за рухом годинникової стрілки) в межах 0º≤α≤360º.

Які ж є властивості повороту? - незмінною точкою повороту є т. О; образом будь–якої прямої є пряма; образом відрізка є рівний йому відрізок; відповідні фігури при повороті рівні між собою і мають однакову орієнтацію; образом променя при повороті є промінь; образом кута – рівний йому кут; образом півплощини – півплощина; образом паралельних прямих – паралельні прямі.

Коли застосовують метод повороту до розв’язання задач на побудову? - коли у фігурі відомо кут з вершиною і є хоча б два рівні відрізки, зокрема: при побудові правильних і рівнобедрених трикутників, квадратів і правильних многогранників. Суть цього методу полягає в тому, що повертають дану чи шукану фігуру, або її елементи на деякий доцільно вибраний кут навколо вибраного центра і зводять розв’язання даної задачі до побудови допоміжної простішої фігури, а потім виконують обернений поворот і дістають шукану фігуру. Центр і кут повороту обирають так, щоб рівні елементи сумістилися або утворили простішу фігуру. При розв’язанні деяких задач доцільно застосовувати кілька поворотів навколо різних центрів.