logo
Лекції з матем - заоч

3. Лінійна функція, її властивості та графік.

3. Більш загальною залежністю, ніж пряма пропорційність величин, є лінійна залежність величин, яка виражається формулою у=kх+b або y=ax+b, перейдемо до визначення та виявлення властивостей цієї функції.

Означення: функція виду у=kх+b (або y=ax+b), де а, b, k – дійсні числа, причому k≠0 (або a≠0) називається лінійною функцією.

Оскільки для знаходження значень функції за відомим значенням аргументу для у=kх+b необхідно виконувати дії множення та додавання, які в множині дійсних чисел завжди існують, то областю визначення цієї функції буде множина дійсних чисел. Отже, D(kх+b)=R.

Для визначення проміжків монотонності функції виберемо два довільних значення аргументу х1 і х2 таких, що х12. Якщо k>0, то kх1>kх2, тоді для довільного bєR маємо: kх1+b>kх2+b, тобто f(х1)>f(х2). Це означає, що при k>0 лінійна функція зростає на всій області визначення. Якщо k<0, то із нерівності х12 випливає kх1<kх2, тоді для довільного bєR маємо: kх1+b<kх2+b, тобто f(х1)<f(х2). Це означає, що при k<0 лінійна функція спадає на всій області визначення.

Для того, щоб визначити парною чи непарною є ця функція, відповідно до означення непарних функцій, маємо: f(-х)=k(-x)+b= -kx+b= -(kx-b)≠ -f(х). Таким чином, не справджується жодна з рівностей f(-х)= -f(х) чи f(-х)=f(х). Це означає, що лінійна функція не відноситься ні до парних, ні до непарних. Розглядаючи рівняння прямих, ми встановили, що графіком функції у=kх+b є пряма лінія. Особливих точок функція немає. Оскільки для кожного значення аргументу хєR, можна знайти відповідне йому значення функції уєR, то множиною значень функції у=kх+b є множина всіх дійсних чисел, тобто Е(kx+b)=R.