logo
Лекції з матем - заоч

3. Необхідні та достатні умови.

3. Розглядаючи імплікацію предикатів, ми зазначали: якщо (хєХ)(А(х)→В(х))=1, то предикат В(х) називають необхідною умовою для істинності предикати А(х), а предикат А(х) називають достатньою умовою для істинності предиката В(х). Якщо ж (хєХ)(В(х)→А(х))=1, то предикат А(х) - необхідна умова для істинності предиката В(х), а предикат В(х) буде достатньою умовою для істинності предиката А(х). Якщо ж (хєХ)(А(х)→В(х))=1 і (хєХ)(В(х)→А(х))=1, то кожен із предикатів є необхідною і достатньою умовою для істинності іншого.

Будь-яку теорему можна сформулювати з використанням слів “необхідно”, “достатньо” чи “необхідно і достатньо”. Покажемо це на прикладі наступної теореми “якщо в чотирикутнику сторони попарно паралельні, то цей чотирикутник паралелограм”. У цій теоремі ми маємо два предикати: А(х): “у чотирикутнику х протилежні сторони попарно паралельні” і “В(х): “чотирикутник х – паралелограм”. Розглянемо імплікацію предикатів А(х)→В(х). Легко переконатися, що вона завжди істинна. Аналогічно імплікація В(х)→А(х)=1. Тоді кожний із предикатів є необхідною і достатньою умовою для іншого, а тому теорему сформулюємо так: “для того, щоб чотирикутник був паралелограмом, необхідно і достатньо, щоб його протилежні сторони були парно паралельні”. Як відомо, теореми, в яких використовують слова “необхідно і достатньо” називають ознаками, бо вони дозволяють з’ясувати, чи відносяться дані об’єкти до певного класу (наприклад, ознаки подільності, ознаки перпендикулярності тощо).