logo search
Лекції з матем - заоч

Доведення.

Для доведення теореми розглянемо квадрат, довжина сторони якого складає 1 одиницю (див. малюнок № 5.2.).

За умовою АВ=1, ВС=1. Припустимо, що довжина діагоналі АС дорівнює нескоротному дробу , тобто раціональному числу. За теоремою Піфагора із трикутника АВС маємо: АС2=АВ2+ВС2 . Тоді ( )2=2. Отже, p2=2q2. Права частина останньої рівності ділиться націло на 2, а тому і ліва частина p2 2. Це означає, що число p – парне, тобто p=2p1. Таким чином, 4p12=2q2. Звідси, 2p12=q2, тобто число q – парне і q=2q1. Отже, тобто дріб - скоротний, а це суперечить умові. Ця суперечність говорить про те, що наше припущення про раціональність числа було хибним. Таким чином, якщо довжини сторін квадрата виражаються раціональними числами, то довжина його діагоналі не виражається раціональним числом. Отже, діагональ квадрата несумірна з його стороною. Теорему доведено.

В С

А Д