logo search
Лекції з матем - заоч

3. Перестановки з повтореннями та без повторення.

3. Розглянемо множину M={a1,a2,a3,...,an}. Розглянемо над цією множиною кортеж довжини k, де k=k1+k2+k3+...+kn, причому елемент a1 - повторюється k1 раз; елемент a2 повторюється k2 раз; елемент a3 - k3 раз; нарешті, елемент an - kn разів. У комбінаториці такі кортежі називають перестановками з повтореннями, а їх число позначають символом Pk1,k2,k3,…kn i читають: число перестановок з повтореннями, в якій перший елемент повторюється k1 раз, другий - k2, третій - k3, n-ий - kn раз.

Означення: будь-який кортеж довжини k, де k=k1+k2+k3+...+kn над даною n елементною множиною М, в якому елемент a1 - повторюється k1 раз, елемент a2 повторюється k2 раз, елемент a3 - k3 раз, … елемент an - kn разів називається перестановкою довжини k (k=k1+k2+k3+...+kn) з повтореннями.

Числом перестановок з перетвореннями обчислюють за формулою: Pk1,k2,k3,…kn =( k1+k2+k3+...+kn)!/(k1!k2!k3!...kn!). Застосування цієї формули покажемо на прикладі наступної задачі.

Задача: скільки чисел можна утворити з цифр 1, 2, 3, якщо 1 - повторюється три рази, 2 - два, 3 - оди раз.