Розкриття невизначеностей. Правило Лопіталя.
(Лопіталь (1661–1704) – французький математик)
До розряду невизначеностей прийнято відносити наступні співвідношення:
Теорема (правило Лопіталя). Якщо функції f(x) і g(x) диференційовані поблизу точки а, неперервні в точці а, g(x) відмінна від нуля поблизу а й f(a) = g(a) = 0, то границя частки функцій при дорівнює границі частки їхніх похідних, якщо ця границя (скінченна або нескінченна) існує.
Доведення. Застосувавши формулу Коші, одержимо:
де – точка, що перебуває між а й х. З огляду на що f(a) = g(a) = 0:
Нехай при ха відношення прямує до деякої границі. Оскільки точка лежить між точками а й х, то при х а одержимо а, а отже й відношення прямує до того ж границі. Таким чином, можна записати:
.
Теорему доведено.
Приклад: Знайти границю .
Як видно, при спробі безпосереднього обчислення границі виходить невизначеність виду . Функції, що входять у чисельник і знаменник дробу задовольняють вимогам теореми Лопіталя.
f(x) = 2x + ; g(x) = ex;
;
Приклад: Знайти границю .
; ;
.
Якщо при розв’язанні приклада після застосування правила Лопіталя спроба обчислити границю знову приводить до невизначеності, то правило Лопіталя може бути застосовано другий раз, третій і т.д. поки не буде отриманий результат. Природно, це можливо тільки в тому випадку, якщо знову отримані функції у свою чергу задовольняють вимогам теореми Лопіталя.
Приклад: Знайти границю .
; ;
; ;
; ;
Слід зазначити, що правило Лопіталя – всього лише один зі способів обчислення границь. Часто в конкретному прикладі поряд із правилом Лопіталя може бути використаний і якийсь інший метод (заміна змінних, домноження та ін.).
Приклад: Знайти границю .
; ;
– знову вийшла невизначеність. Застосуємо правило Лопіталя ще раз.
; ;
– застосовуємо правило Лопіталя ще раз.
; ;
;
Невизначеності вигляду можна розкрити за допомогою логарифмування. Такі невизначеності зустрічаються при знаходженні меж функцій вигляду , f(x)>0 поблизу точки а при ха. Для знаходження границі такої функції досить знайти границю функції ln y = g(x) ln f(x).
Приклад: Знайти границю .
Тут y = xx, ln y = x ln x.
Тоді . Отже
Приклад: Знайти границю .
; – одержали невизначеність. Застосовуємо правило Лопіталя ще раз.
; ;
Похідні й диференціали вищих порядків.
Нехай функція f(x) – диференційована на деякому інтервалі. Тоді, диференціюючи її, одержуємо першу похідну
Якщо знайти похідну функції f(x), одержимо другу похідну функції f(x).
тобто y = (y) або .
Цей процес можна продовжити й далі, знаходячи похідні ступеня n.
.
Загальні правила знаходження вищих похідних.
Якщо функції u = f(x) і v = g(x) диференційовані, то
-
(Сu)(n) = Cu(n);
-
(u v)(n) = u(n) v(n);
3)
.
Цей вираз називається формулою Лейбніца.
Також за формулою dny = f(n)(x)dxn може бути знайдений диференціал n-го порядку.
Дослідження функцій за допомогою похідної.
Зростання й спадання функцій.
Теорема. 1) Якщо функція f(x) має похідну на відрізку [a, b] і зростає на цьому відрізку, то її похідна на цьому відрізку ненегативна, тобто .
2) Якщо функція f(x) неперервна на відрізку [a, b] і диференційована на проміжку (а, b), причому f(x) > 0 для a < x < b, то ця функція зростає на відрізку [a, b].
Доведення.
-
Якщо функція f(x) зростає, то f(x + x) > f(x) при x >0 і f(x + x) < f(x) при x<0,
тоді:
2) Нехай f(x)>0 для будь-яких точок х1 і х2, що належать відрізку [a, b], причому x1<x2.
Тоді за теоремою Лагранжа: f(x2) – f(x1) = f()(x2 – x1), x1 < < x2
За умовою f()>0, отже, f(x2) – f(x1) >0, тобто функція f(x) зростає.
Теорему доведено.
Аналогічно можна зробити висновок про те, що якщо функція f(x) спадає на відрізку [a, b], то на цьому відрізку. Якщо у проміжку (a, b), то f(x) спадає на відрізку [a, b].
Звичайно, дане твердження справедливо, якщо функція f(x) неперервна на відрізку [a, b] і диференційована на інтервалі (a, b).
Доведену вище теорему можна проілюструвати геометрично:
y y
x x
- Диференціальне числення функції однієї змінної. Похідна функції, її геометричний і фізичний зміст.
- Однобічні похідні функції в точці.
- Похідна показниково-степеневої функції.
- Похідна оберненої функцій.
- Диференціал функції.
- Формула Тейлора.
- Формула Маклорена.
- Подання деяких елементарних функцій за формулою Тейлора.
- Застосування диференціала до наближених обчислень.
- Теореми про середнє. Теорема Ролля.
- Теорема Лагранжа.
- Теорема Коші.
- Розкриття невизначеностей. Правило Лопіталя.
- Точки екстремуму.
- Дослідження функції на екстремум за допомогою похідних вищих порядків.
- Опуклість і увігнутість кривої. Точки перегину.
- Асимптоти.
- Вертикальні асимптоти.
- Похилі асимптоти.
- Векторна функція скалярного аргументу.
- Властивості похідної векторної функції скалярного аргументу.
- Параметричне задання функції.
- Рівняння деяких типів кривих у параметричній формі. Коло.
- Циклоїда.
- Астроїда.
- Похідна функції, заданої параметрично.
- Кривизна плоскої кривої.
- Властивості еволюти.
- Кривизна просторової кривої.
- Про формули Френе.
- Інтегральне числення. Первісна функція.
- Невизначений інтеграл.
- Методи інтегрування.
- Безпосереднє інтегрування.
- Спосіб підстановки (заміни змінних).
- Інтегрування частинами.
- Інтегрування елементарних дробів.
- Інтегрування раціональних функцій. Інтегрування раціональних дробів.
- Інтегрування деяких тригонометричних функцій.
- Інтеграл виду .
- Інтеграл виду , якщо функція r є непарною відносно cos X.
- Інтегрування деяких ірраціональних функцій.
- Інтеграл виду де n – натуральне число.
- Інтегрування біноміальних диференціалів.
- Інтеграли виду .
- 1 Спосіб. Тригонометрична підстановка.
- 2 Спосіб. Підстановки Ейлера. (1707–1783)
- 3 Спосіб. Метод невизначених коефіцієнтів.
- Кілька прикладів інтегралів, що не виражаються через елементарні функції.
- Визначений інтеграл.
- Властивості визначеного інтеграла.
- Обчислення визначеного інтеграла.
- Заміна змінних.
- Інтегрування частинами.
- Наближене обчислення визначеного інтеграла.
- Формула прямокутників.
- Формула трапецій.
- Формула парабол
- Невласні інтеграли.
- Інтеграл від розривної функції.
- Геометричні застосування визначеного інтеграла. Обчислення площ плоских фігур.
- Знаходження площі криволінійного сектора.
- Обчислення довжини дуги кривої.
- Обчислення об'ємів тіл. Обчислення об'єму тіла за відомими площами його паралельних перетинів.
- Об'єм тіл обертання.
- Площа поверхні тіла обертання.
- Функції декількох змінних
- Похідні й диференціали функцій декількох змінних.
- Повний приріст і повний диференціал.
- Геометричний зміст повного диференціала. Дотична площина й нормаль до поверхні.
- Наближені обчислення за допомогою повного диференціала.
- Частинні похідні вищих порядків.
- Екстремум функції декількох змінних.
- Умовний екстремум.
- Похідна за напрямком.
- Градієнт.
- Зв'язок градієнта з похідною за напрямком.
- Кратні інтеграли.
- Подвійні інтеграли.
- Умови існування подвійного інтеграла.
- Властивості подвійного інтеграла.
- Обчислення подвійного інтеграла.
- Заміна змінних у подвійному інтегралі.
- Подвійний інтеграл у полярних координатах.
- Потрійний інтеграл.
- Заміна змінних у потрійному інтегралі.
- Циліндрична система координат.
- Сферична система координат.
- Геометричні й фізичні застосування кратних інтегралів.