Похилі асимптоти.
Припустимо, що крива y = f(x) має похилу асимптоту y = kx + b.
M
N
P
Q
Позначимо точку перетину кривої й перпендикуляра до асимптоти – М, Р – точку перетину цього перпендикуляра з асимптотою. Кут між асимптотою і віссю Ох позначимо . Перпендикуляр МQ до осі Ох перетинає асимптоту в точці N.
Тоді MQ = y – ордината точки кривої, NQ = – ордината точки N на асимптоті.
За умовою: , NMP = , .
Кут – сталий і не рівний 900, тому
Тоді .
Отже, пряма y = kx + b – асимптота кривої. Для точного визначення цієї прямої необхідно знайти спосіб обчислення коефіцієнтів k і b.
В отриманому виразі виносимо за дужки х:
Оскільки х, то , оскільки b = const, то .
Тоді , отже,
.
Оскільки , то , отже,
Відзначимо, що горизонтальні асимптоти є частковим випадком похилих асимптот при k =0.
Приклад. Знайти асимптоти й побудувати графік функції .
1) Вертикальні асимптоти: y + x 0–0; y – x 0+0, отже, х = 0 – вертикальна асимптота.
2) Похилі асимптоти:
Таким чином, пряма y = х + 2 є похилої асимптотою.
Побудуємо графік функції:
Приклад. Знайти асимптоти й побудувати графік функції .
Прямі х = 3 і х = – 3 є вертикальними асимптотами кривої.
Знайдемо похилі асимптоти:
y = 0 – горизонтальна асимптота.
Приклад. Знайти асимптоти й побудувати графік функції .
Пряма х = – 2 є вертикальною асимптотою кривої.
Знайдемо похилі асимптоти.
Отже, пряма y = х – 4 є похилою асимптотою.
Схема дослідження функцій
Процес дослідження функції складається з декількох етапів. Для найбільш повного подання про поводження функції й характер її графіка необхідно відшукати:
-
Область існування функції.
Це поняття містить у собі й область значень і область визначення функції.
-
Точки розриву. (Якщо вони є).
-
Інтервали зростання й спадання.
-
Точки максимуму й мінімуму.
-
Максимальне й мінімальне значення функції на її області визначення.
-
Області опуклості й увігнутості.
-
Точки перегину.(Якщо вони є).
-
Асимптоти.(Якщо вони є).
-
Побудова графіка.
Застосування цієї схеми розглянемо на прикладі.
Приклад. Дослідити функцію й побудувати її графік.
Знаходимо область існування функції. Очевидно, що областю визначення функції є область (–; – 1) (– 1; 1) (1; ).
У свою чергу, видно, що прямі х = 1, х = – 1 є вертикальними асимптотами кривої.
Областю значень даної функції є інтервал (– ; ).
Точками розриву функції є точки х = 1, х = – 1.
Знаходимо критичні точки.
Знайдемо похідну функції
Критичні точки: x = 0; x = –; x = ; x = – 1; x = 1.
Знайдемо другу похідну функції
.
Визначимо опуклість і увігнутість кривої на проміжках.
– < x < – , y < 0, крива опукла
– < x < – 1, y < 0, крива опукла
– 1 < x < 0, y > 0, крива увігнута
0 < x < 1, y < 0, крива опукла
1 < x < , y > 0, крива увігнута
< x < , y > 0, крива увігнута
Знаходимо проміжки зростання й спадання функції. Для цього визначаємо знаки похідної функції на проміжках.
– < x < –, y > 0, функція зростає
– < x < –1, y < 0, функція спадає
–1 < x < 0, y < 0, функція спадає
0 < x < 1, y < 0, функція спадає
1 < x < , y < 0, функція спадає
< x < , y > 0, функція зростає
Видно, що точка х = – є точкою максимуму, а точка х = є точкою мінімуму. Значення функції в цих точках рівні відповідно 3/2 і –3/2.
Про вертикальні асимптоти було вже сказане вище. Тепер знайдемо похилі асимптоти.
Отже, рівняння похилої асимптоти – y = x.
Побудуємо графік функції:
Yandex.RTB R-A-252273-3
- Диференціальне числення функції однієї змінної. Похідна функції, її геометричний і фізичний зміст.
- Однобічні похідні функції в точці.
- Похідна показниково-степеневої функції.
- Похідна оберненої функцій.
- Диференціал функції.
- Формула Тейлора.
- Формула Маклорена.
- Подання деяких елементарних функцій за формулою Тейлора.
- Застосування диференціала до наближених обчислень.
- Теореми про середнє. Теорема Ролля.
- Теорема Лагранжа.
- Теорема Коші.
- Розкриття невизначеностей. Правило Лопіталя.
- Точки екстремуму.
- Дослідження функції на екстремум за допомогою похідних вищих порядків.
- Опуклість і увігнутість кривої. Точки перегину.
- Асимптоти.
- Вертикальні асимптоти.
- Похилі асимптоти.
- Векторна функція скалярного аргументу.
- Властивості похідної векторної функції скалярного аргументу.
- Параметричне задання функції.
- Рівняння деяких типів кривих у параметричній формі. Коло.
- Циклоїда.
- Астроїда.
- Похідна функції, заданої параметрично.
- Кривизна плоскої кривої.
- Властивості еволюти.
- Кривизна просторової кривої.
- Про формули Френе.
- Інтегральне числення. Первісна функція.
- Невизначений інтеграл.
- Методи інтегрування.
- Безпосереднє інтегрування.
- Спосіб підстановки (заміни змінних).
- Інтегрування частинами.
- Інтегрування елементарних дробів.
- Інтегрування раціональних функцій. Інтегрування раціональних дробів.
- Інтегрування деяких тригонометричних функцій.
- Інтеграл виду .
- Інтеграл виду , якщо функція r є непарною відносно cos X.
- Інтегрування деяких ірраціональних функцій.
- Інтеграл виду де n – натуральне число.
- Інтегрування біноміальних диференціалів.
- Інтеграли виду .
- 1 Спосіб. Тригонометрична підстановка.
- 2 Спосіб. Підстановки Ейлера. (1707–1783)
- 3 Спосіб. Метод невизначених коефіцієнтів.
- Кілька прикладів інтегралів, що не виражаються через елементарні функції.
- Визначений інтеграл.
- Властивості визначеного інтеграла.
- Обчислення визначеного інтеграла.
- Заміна змінних.
- Інтегрування частинами.
- Наближене обчислення визначеного інтеграла.
- Формула прямокутників.
- Формула трапецій.
- Формула парабол
- Невласні інтеграли.
- Інтеграл від розривної функції.
- Геометричні застосування визначеного інтеграла. Обчислення площ плоских фігур.
- Знаходження площі криволінійного сектора.
- Обчислення довжини дуги кривої.
- Обчислення об'ємів тіл. Обчислення об'єму тіла за відомими площами його паралельних перетинів.
- Об'єм тіл обертання.
- Площа поверхні тіла обертання.
- Функції декількох змінних
- Похідні й диференціали функцій декількох змінних.
- Повний приріст і повний диференціал.
- Геометричний зміст повного диференціала. Дотична площина й нормаль до поверхні.
- Наближені обчислення за допомогою повного диференціала.
- Частинні похідні вищих порядків.
- Екстремум функції декількох змінних.
- Умовний екстремум.
- Похідна за напрямком.
- Градієнт.
- Зв'язок градієнта з похідною за напрямком.
- Кратні інтеграли.
- Подвійні інтеграли.
- Умови існування подвійного інтеграла.
- Властивості подвійного інтеграла.
- Обчислення подвійного інтеграла.
- Заміна змінних у подвійному інтегралі.
- Подвійний інтеграл у полярних координатах.
- Потрійний інтеграл.
- Заміна змінних у потрійному інтегралі.
- Циліндрична система координат.
- Сферична система координат.
- Геометричні й фізичні застосування кратних інтегралів.