Обчислення об'ємів тіл. Обчислення об'єму тіла за відомими площами його паралельних перетинів.
Q(xi–1)
Q(xi)
a xi–1 xi b x
Нехай є тіло об'єму V. Площа будь-якого поперечного переріза тіла Q, відома як неперервна функція Q = Q(x). Розіб'ємо тіло на “шари” поперечними перерізами, що проходять через точки хi розбивки відрізка [a, b]. Оскільки на будь-якому проміжному відрізку розбивки [xi–1, xi] функція Q(x) неперервна, то приймає на ньому найбільше й найменше значення. Позначимо їх відповідно Mi і mi.
Якщо на цих найбільшому й найменшому перетинах побудувати циліндри з твірними, паралельними осі х, то об'єми цих циліндрів будуть відповідно рівні Mixi і mixi тут xi = xi – xi–1.
Зробивши такі побудови для всіх відрізків розбивки, одержимо циліндри, об'єми яких рівні відповідно й .
При прямуванні до нуля кроку розбивки , ці суми мають спільну границю:
Таким чином, об'єм тіла може бути знайдений за формулою:
Недоліком цієї формули є те, що для знаходження об'єму необхідно знати функцію Q(x), що досить проблематично для складних тіл.
Приклад: Знайти об'єм кулі радіуса R.
y
R y
– R O x R x
У поперечних перерізах кулі виходять кола змінного радіуса y. Залежно від поточної координати х цей радіус виражається за формулою .
Тоді функція площ перетинів має вигляд: Q(x) = .
Одержуємо об'єм кулі:
.
Приклад: Знайти об'єм довільної піраміди з висотою Н і площею основи S.
Q S
x H x
При перетині піраміди площинами, перпендикулярними висоті, у перетині одержуємо фігури, подібні до основи. Коефіцієнт подібності цих фігур дорівнює відношенню x/H, де х – відстань від площини перетину до вершини піраміди.
З геометрії відомо, що відношення площ подібних фігур дорівнює коефіцієнту подоби у квадраті, тобто
Звідси одержуємо функцію площ перетинів:
Знаходимо об'єм піраміди:
Yandex.RTB R-A-252273-3
- Диференціальне числення функції однієї змінної. Похідна функції, її геометричний і фізичний зміст.
- Однобічні похідні функції в точці.
- Похідна показниково-степеневої функції.
- Похідна оберненої функцій.
- Диференціал функції.
- Формула Тейлора.
- Формула Маклорена.
- Подання деяких елементарних функцій за формулою Тейлора.
- Застосування диференціала до наближених обчислень.
- Теореми про середнє. Теорема Ролля.
- Теорема Лагранжа.
- Теорема Коші.
- Розкриття невизначеностей. Правило Лопіталя.
- Точки екстремуму.
- Дослідження функції на екстремум за допомогою похідних вищих порядків.
- Опуклість і увігнутість кривої. Точки перегину.
- Асимптоти.
- Вертикальні асимптоти.
- Похилі асимптоти.
- Векторна функція скалярного аргументу.
- Властивості похідної векторної функції скалярного аргументу.
- Параметричне задання функції.
- Рівняння деяких типів кривих у параметричній формі. Коло.
- Циклоїда.
- Астроїда.
- Похідна функції, заданої параметрично.
- Кривизна плоскої кривої.
- Властивості еволюти.
- Кривизна просторової кривої.
- Про формули Френе.
- Інтегральне числення. Первісна функція.
- Невизначений інтеграл.
- Методи інтегрування.
- Безпосереднє інтегрування.
- Спосіб підстановки (заміни змінних).
- Інтегрування частинами.
- Інтегрування елементарних дробів.
- Інтегрування раціональних функцій. Інтегрування раціональних дробів.
- Інтегрування деяких тригонометричних функцій.
- Інтеграл виду .
- Інтеграл виду , якщо функція r є непарною відносно cos X.
- Інтегрування деяких ірраціональних функцій.
- Інтеграл виду де n – натуральне число.
- Інтегрування біноміальних диференціалів.
- Інтеграли виду .
- 1 Спосіб. Тригонометрична підстановка.
- 2 Спосіб. Підстановки Ейлера. (1707–1783)
- 3 Спосіб. Метод невизначених коефіцієнтів.
- Кілька прикладів інтегралів, що не виражаються через елементарні функції.
- Визначений інтеграл.
- Властивості визначеного інтеграла.
- Обчислення визначеного інтеграла.
- Заміна змінних.
- Інтегрування частинами.
- Наближене обчислення визначеного інтеграла.
- Формула прямокутників.
- Формула трапецій.
- Формула парабол
- Невласні інтеграли.
- Інтеграл від розривної функції.
- Геометричні застосування визначеного інтеграла. Обчислення площ плоских фігур.
- Знаходження площі криволінійного сектора.
- Обчислення довжини дуги кривої.
- Обчислення об'ємів тіл. Обчислення об'єму тіла за відомими площами його паралельних перетинів.
- Об'єм тіл обертання.
- Площа поверхні тіла обертання.
- Функції декількох змінних
- Похідні й диференціали функцій декількох змінних.
- Повний приріст і повний диференціал.
- Геометричний зміст повного диференціала. Дотична площина й нормаль до поверхні.
- Наближені обчислення за допомогою повного диференціала.
- Частинні похідні вищих порядків.
- Екстремум функції декількох змінних.
- Умовний екстремум.
- Похідна за напрямком.
- Градієнт.
- Зв'язок градієнта з похідною за напрямком.
- Кратні інтеграли.
- Подвійні інтеграли.
- Умови існування подвійного інтеграла.
- Властивості подвійного інтеграла.
- Обчислення подвійного інтеграла.
- Заміна змінних у подвійному інтегралі.
- Подвійний інтеграл у полярних координатах.
- Потрійний інтеграл.
- Заміна змінних у потрійному інтегралі.
- Циліндрична система координат.
- Сферична система координат.
- Геометричні й фізичні застосування кратних інтегралів.