Теореми про середнє. Теорема Ролля.
(Ролль (1652–1719) – французький математик)
Якщо функція f(x) неперервна на відрізку [a, b], диференційована на інтервалі (а, b) і значення функції на кінцях відрізка рівні f(a) = f(b), то на інтервалі (а, b) існує точка , a < < b, у якій похідна функція f(x) рівна нулю, f() = 0.
Геометричний зміст теореми Ролля полягає в тому, що при виконанні умов теореми на інтервалі (a, b) існує точка така, що у відповідній точці кривої y = f(x) дотична паралельна осі Ох. Таких точок на інтервалі може бути й трохи, але теорема затверджує існування принаймні однієї такої точки.
Доведення. По властивості функцій, неперервних на відрізку функція f(x) на відрізку [a, b] приймає найбільше й найменше значення. Позначимо ці значення М і m відповідно. Можливі два різних випадки М = m і M m.
Нехай M = m. Тоді функція f(x) на відрізку [a, b] зберігає постійне значення й у будь-якій точці інтервалу її похідна дорівнює нулю. У цьому випадку за можна прийняти будь-яку точку інтервалу.
Нехай М = m. Тоді значення на кінцях відрізка рівні, то хоча б одне зі значень М або m функція приймає усередині відрізка [a, b]. Позначимо , a < < b точку, у якій f() = M. Тому що М – найбільше значення функції, то для кожного х ( будемо вважати, що точка + х перебуває усередині розглянутого інтервалу) вірна нерівність:
При цьому
Але тому що за умовою похідна в точці існує, то існує й границя .
Оскільки і , то можна зробити висновок:
Теорему доведено.
Теорема Ролля має кілька наслідків:
-
Якщо функція f(x) на відрізку [a, b] задовольняє теоремі Ролля, причому f(a) = f(b) = = 0, то існує принаймні одна точка , a < < b, така, що f () = 0. Тобто між двома нулями функції знайдеться хоча б одна точка, у якій похідна функції дорівнює нулю.
-
Якщо на розглянутому інтервалі (а, b) функція f(x) має похідну (n–1)-го порядку й n раз обертається в нуль, то існує принаймні одна точка інтервалу, у якій похідна (n – 1)-го порядку дорівнює нулю.
Yandex.RTB R-A-252273-3
- Диференціальне числення функції однієї змінної. Похідна функції, її геометричний і фізичний зміст.
- Однобічні похідні функції в точці.
- Похідна показниково-степеневої функції.
- Похідна оберненої функцій.
- Диференціал функції.
- Формула Тейлора.
- Формула Маклорена.
- Подання деяких елементарних функцій за формулою Тейлора.
- Застосування диференціала до наближених обчислень.
- Теореми про середнє. Теорема Ролля.
- Теорема Лагранжа.
- Теорема Коші.
- Розкриття невизначеностей. Правило Лопіталя.
- Точки екстремуму.
- Дослідження функції на екстремум за допомогою похідних вищих порядків.
- Опуклість і увігнутість кривої. Точки перегину.
- Асимптоти.
- Вертикальні асимптоти.
- Похилі асимптоти.
- Векторна функція скалярного аргументу.
- Властивості похідної векторної функції скалярного аргументу.
- Параметричне задання функції.
- Рівняння деяких типів кривих у параметричній формі. Коло.
- Циклоїда.
- Астроїда.
- Похідна функції, заданої параметрично.
- Кривизна плоскої кривої.
- Властивості еволюти.
- Кривизна просторової кривої.
- Про формули Френе.
- Інтегральне числення. Первісна функція.
- Невизначений інтеграл.
- Методи інтегрування.
- Безпосереднє інтегрування.
- Спосіб підстановки (заміни змінних).
- Інтегрування частинами.
- Інтегрування елементарних дробів.
- Інтегрування раціональних функцій. Інтегрування раціональних дробів.
- Інтегрування деяких тригонометричних функцій.
- Інтеграл виду .
- Інтеграл виду , якщо функція r є непарною відносно cos X.
- Інтегрування деяких ірраціональних функцій.
- Інтеграл виду де n – натуральне число.
- Інтегрування біноміальних диференціалів.
- Інтеграли виду .
- 1 Спосіб. Тригонометрична підстановка.
- 2 Спосіб. Підстановки Ейлера. (1707–1783)
- 3 Спосіб. Метод невизначених коефіцієнтів.
- Кілька прикладів інтегралів, що не виражаються через елементарні функції.
- Визначений інтеграл.
- Властивості визначеного інтеграла.
- Обчислення визначеного інтеграла.
- Заміна змінних.
- Інтегрування частинами.
- Наближене обчислення визначеного інтеграла.
- Формула прямокутників.
- Формула трапецій.
- Формула парабол
- Невласні інтеграли.
- Інтеграл від розривної функції.
- Геометричні застосування визначеного інтеграла. Обчислення площ плоских фігур.
- Знаходження площі криволінійного сектора.
- Обчислення довжини дуги кривої.
- Обчислення об'ємів тіл. Обчислення об'єму тіла за відомими площами його паралельних перетинів.
- Об'єм тіл обертання.
- Площа поверхні тіла обертання.
- Функції декількох змінних
- Похідні й диференціали функцій декількох змінних.
- Повний приріст і повний диференціал.
- Геометричний зміст повного диференціала. Дотична площина й нормаль до поверхні.
- Наближені обчислення за допомогою повного диференціала.
- Частинні похідні вищих порядків.
- Екстремум функції декількох змінних.
- Умовний екстремум.
- Похідна за напрямком.
- Градієнт.
- Зв'язок градієнта з похідною за напрямком.
- Кратні інтеграли.
- Подвійні інтеграли.
- Умови існування подвійного інтеграла.
- Властивості подвійного інтеграла.
- Обчислення подвійного інтеграла.
- Заміна змінних у подвійному інтегралі.
- Подвійний інтеграл у полярних координатах.
- Потрійний інтеграл.
- Заміна змінних у потрійному інтегралі.
- Циліндрична система координат.
- Сферична система координат.
- Геометричні й фізичні застосування кратних інтегралів.