Функції декількох змінних
При розгляді функцій декількох змінних обмежимося докладним описом функцій двох змінних, тому що всі отримані результати будуть справедливі для функцій довільного числа змінних.
Визначення: Якщо кожній парі незалежних одне від одного чисел (х, у) з деякої множини за якимось правилом ставиться у відповідність одне або кілька значень змінної z, то змінна z називається функцією двох змінних.
z = f(x, y)
Визначення: Якщо парі чисел (х, у) відповідає одне значення z, то функція називається однозначною, а якщо більше одного, то – багатозначною.
Визначення: Областю визначення функції z називається сукупність пар (х, у), при яких функція z існує.
Визначення: Околом точки М0(х0, y0) радіуса r називається сукупність всіх точок (х, у), які задовольняють умові .
Визначення: Число А називається границею функції f (x, y) при прямуванні точки М(х, у) до точки М0(х0, y0), якщо для кожного числа > 0 знайдеться таке число r > 0, що для будь-якої точки М(х, у), для якої вірна умова
також вірна й умова .
Записують:
Визначення: Нехай точка М0(х0, y0) належить області визначення функції f (x, y). Тоді функція z = f(x, y) називається неперервною в точці М0(х0, y0), якщо
(1)
причому точка М(х, у) прямує до точки М0(х0, y0) довільним чином.
Якщо в будь-якій точці умова (1) не виконується, то ця точка називається точкою розриву функції f (x, y). Це може бути в наступних випадках:
-
Функція z = f(x, y) не визначена в точці М0(х0, y0).
-
Не існує границя .
-
Ця границя існує, але він не дорівнює f (x0, y0).
Властивість. Якщо функція f(x, y, ...) визначена й неперервна в замкнутій і обмеженої області D, то в цій області знайдеться принаймні одна точка N(x0, y0, …), така, що для інших точок вірна нерівність
а також точка N1(x01, y01, …), така, що для всіх інших точок вірна нерівність
тоді f (x0, y0, …) = M – найбільше значення функції, а f (x01, y01, …) = m – найменше значення функції f (x, y, …) в області D.
Неперервна функція в замкнутій і обмеженій області D досягає принаймні один раз найбільшого значення й один раз найменшого.
Властивість. Якщо функція f (x, y, ...) визначена й неперервна в замкнутій обмеженій області D, а M і m – відповідно найбільше й найменше значення функції в цій області, то для будь-якої точки [m, M] існує точка N0(x0, y0, …) така, що f (x0, y0, …) = .
Простіше кажучи, неперервна функція приймає в області D всі проміжні значення між M і m. Наслідком цієї властивості може служити висновок, що якщо числа M і m різних знаків, то в області D функція принаймні один раз звертається в нуль.
Властивість. Функція f(x, y, …), неперервна в замкнутій обмеженій області D, обмежена в цій області, якщо існує таке число K, що для всіх точок області вірна нерівність .
Властивість. Якщо функція f(x, y, …) визначена й неперервна в замкнутій обмеженій області D, то вона рівномірно неперервна в цій області, тобто для будь-якого позитивного числа існує таке число > 0, що для будь-яких двох точок (х1, y1) і (х2, y2) області, що перебувають на відстані, меншій , виконується нерівність
Наведені вище властивості аналогічні властивостям функцій однієї змінної, неперервним на відрізку. Див. Властивості функцій, неперервних на відрізку.
Yandex.RTB R-A-252273-3
- Диференціальне числення функції однієї змінної. Похідна функції, її геометричний і фізичний зміст.
- Однобічні похідні функції в точці.
- Похідна показниково-степеневої функції.
- Похідна оберненої функцій.
- Диференціал функції.
- Формула Тейлора.
- Формула Маклорена.
- Подання деяких елементарних функцій за формулою Тейлора.
- Застосування диференціала до наближених обчислень.
- Теореми про середнє. Теорема Ролля.
- Теорема Лагранжа.
- Теорема Коші.
- Розкриття невизначеностей. Правило Лопіталя.
- Точки екстремуму.
- Дослідження функції на екстремум за допомогою похідних вищих порядків.
- Опуклість і увігнутість кривої. Точки перегину.
- Асимптоти.
- Вертикальні асимптоти.
- Похилі асимптоти.
- Векторна функція скалярного аргументу.
- Властивості похідної векторної функції скалярного аргументу.
- Параметричне задання функції.
- Рівняння деяких типів кривих у параметричній формі. Коло.
- Циклоїда.
- Астроїда.
- Похідна функції, заданої параметрично.
- Кривизна плоскої кривої.
- Властивості еволюти.
- Кривизна просторової кривої.
- Про формули Френе.
- Інтегральне числення. Первісна функція.
- Невизначений інтеграл.
- Методи інтегрування.
- Безпосереднє інтегрування.
- Спосіб підстановки (заміни змінних).
- Інтегрування частинами.
- Інтегрування елементарних дробів.
- Інтегрування раціональних функцій. Інтегрування раціональних дробів.
- Інтегрування деяких тригонометричних функцій.
- Інтеграл виду .
- Інтеграл виду , якщо функція r є непарною відносно cos X.
- Інтегрування деяких ірраціональних функцій.
- Інтеграл виду де n – натуральне число.
- Інтегрування біноміальних диференціалів.
- Інтеграли виду .
- 1 Спосіб. Тригонометрична підстановка.
- 2 Спосіб. Підстановки Ейлера. (1707–1783)
- 3 Спосіб. Метод невизначених коефіцієнтів.
- Кілька прикладів інтегралів, що не виражаються через елементарні функції.
- Визначений інтеграл.
- Властивості визначеного інтеграла.
- Обчислення визначеного інтеграла.
- Заміна змінних.
- Інтегрування частинами.
- Наближене обчислення визначеного інтеграла.
- Формула прямокутників.
- Формула трапецій.
- Формула парабол
- Невласні інтеграли.
- Інтеграл від розривної функції.
- Геометричні застосування визначеного інтеграла. Обчислення площ плоских фігур.
- Знаходження площі криволінійного сектора.
- Обчислення довжини дуги кривої.
- Обчислення об'ємів тіл. Обчислення об'єму тіла за відомими площами його паралельних перетинів.
- Об'єм тіл обертання.
- Площа поверхні тіла обертання.
- Функції декількох змінних
- Похідні й диференціали функцій декількох змінних.
- Повний приріст і повний диференціал.
- Геометричний зміст повного диференціала. Дотична площина й нормаль до поверхні.
- Наближені обчислення за допомогою повного диференціала.
- Частинні похідні вищих порядків.
- Екстремум функції декількох змінних.
- Умовний екстремум.
- Похідна за напрямком.
- Градієнт.
- Зв'язок градієнта з похідною за напрямком.
- Кратні інтеграли.
- Подвійні інтеграли.
- Умови існування подвійного інтеграла.
- Властивості подвійного інтеграла.
- Обчислення подвійного інтеграла.
- Заміна змінних у подвійному інтегралі.
- Подвійний інтеграл у полярних координатах.
- Потрійний інтеграл.
- Заміна змінних у потрійному інтегралі.
- Циліндрична система координат.
- Сферична система координат.
- Геометричні й фізичні застосування кратних інтегралів.