logo
lect2

Зв'язок градієнта з похідною за напрямком.

Теорема: Нехай задана функція u = u(x, y, z) і поле градієнтів

.

Тоді похідна за напрямком деякого вектора рівна проекції вектора grad u на вектор .

Доведення: Розглянемо одиничний вектор і деяку функцію u = u (x, y, z) і знайдемо скалярний добуток векторів і grad u.

Вираз, що стоїть в правій частині цієї рівності є похідною функції u за напрямком s.

Тобто . Якщо кут між векторами grad u і позначити через , той скалярний добуток можна записати у вигляді добутку модулів цих векторів на косинус кута між ними. З врахуванням того, що вектор одиничний, тобто його модуль дорівнює одиниці, можна записати:

Вираз, що стоїть в правій частині цієї рівності і є проекцією вектора grad u на вектор .

Теорему доведено.

Для ілюстрації геометричного й фізичного змісту градієнта скажемо, що градієнт – вектор, що показує напрямок найшвидшої зміни деякого скалярного поля u у якійсь точці. У фізиці існують такі поняття як градієнт температури, градієнт тиску й т.п. Тобто напрямок градієнта є напрямком найбільш швидкого росту функції.

З погляду геометричного подання градієнт перпендикулярний поверхні рівня функції.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4