Похідна за напрямком.
Розглянемо функцію u(x, y, z) у точці М( x, y, z) і точці М1(x + x, y + y, z + z).
Проведемо через точки М та М1 вектор . Кути нахилу цього вектора до напрямку координатних осей х, y, z позначимо відповідно , , . Косинуси цих кутів називаються напрямними косинусами вектора .
Відстань між точками М та М1 на векторі позначимо S.
Висловлені вище припущення, проілюструємо на малюнку:
z
M
M1
y
x
Далі припустимо, що функція u(x, y, z) неперервна й має неперервні частинні похідні по змінним х, у і z. Тоді правомірно записати наступний вираз:
,
де величини 1, 2, 3 – нескінченно малі при .
З геометричних міркувань очевидно:
Таким чином, наведені вище рівності можуть бути представлені в такий спосіб:
;
Відзначимо, що величина s є скалярною. Вона лише визначає напрямок вектора .
Із цього рівняння випливає таке визначення:
Визначення: Границя називається похідною функції u(x, y, z) за напрямком вектора в точці з координатами (x, y, z).
Пояснимо значення викладених вище рівностей на прикладі.
Приклад. Обчислити похідну функції z = x2 + y2x у точці А(1, 2) за напрямком вектора . В (3, 0).
Розв’язання. Насамперед необхідно визначити координати вектора .
=(3 – 1; 0 – 2) = (2; – 2) = 2.
Далі визначаємо модуль цього вектора:
=
Знаходимо частинні похідні функції z у загальному вигляді:
Значення цих величин у точці А:
Для знаходження напрямних косинусів вектора робимо наступні перетворення:
=
За величину приймається довільний вектор, спрямований уздовж заданого вектора, тобто визначальний напрямок диференціювання.
Звідси одержуємо значення напрямних косинусів вектора :
cos = ; cos = –
Остаточно одержуємо: – значення похідної заданої функції за напрямком вектора .
- Диференціальне числення функції однієї змінної. Похідна функції, її геометричний і фізичний зміст.
- Однобічні похідні функції в точці.
- Похідна показниково-степеневої функції.
- Похідна оберненої функцій.
- Диференціал функції.
- Формула Тейлора.
- Формула Маклорена.
- Подання деяких елементарних функцій за формулою Тейлора.
- Застосування диференціала до наближених обчислень.
- Теореми про середнє. Теорема Ролля.
- Теорема Лагранжа.
- Теорема Коші.
- Розкриття невизначеностей. Правило Лопіталя.
- Точки екстремуму.
- Дослідження функції на екстремум за допомогою похідних вищих порядків.
- Опуклість і увігнутість кривої. Точки перегину.
- Асимптоти.
- Вертикальні асимптоти.
- Похилі асимптоти.
- Векторна функція скалярного аргументу.
- Властивості похідної векторної функції скалярного аргументу.
- Параметричне задання функції.
- Рівняння деяких типів кривих у параметричній формі. Коло.
- Циклоїда.
- Астроїда.
- Похідна функції, заданої параметрично.
- Кривизна плоскої кривої.
- Властивості еволюти.
- Кривизна просторової кривої.
- Про формули Френе.
- Інтегральне числення. Первісна функція.
- Невизначений інтеграл.
- Методи інтегрування.
- Безпосереднє інтегрування.
- Спосіб підстановки (заміни змінних).
- Інтегрування частинами.
- Інтегрування елементарних дробів.
- Інтегрування раціональних функцій. Інтегрування раціональних дробів.
- Інтегрування деяких тригонометричних функцій.
- Інтеграл виду .
- Інтеграл виду , якщо функція r є непарною відносно cos X.
- Інтегрування деяких ірраціональних функцій.
- Інтеграл виду де n – натуральне число.
- Інтегрування біноміальних диференціалів.
- Інтеграли виду .
- 1 Спосіб. Тригонометрична підстановка.
- 2 Спосіб. Підстановки Ейлера. (1707–1783)
- 3 Спосіб. Метод невизначених коефіцієнтів.
- Кілька прикладів інтегралів, що не виражаються через елементарні функції.
- Визначений інтеграл.
- Властивості визначеного інтеграла.
- Обчислення визначеного інтеграла.
- Заміна змінних.
- Інтегрування частинами.
- Наближене обчислення визначеного інтеграла.
- Формула прямокутників.
- Формула трапецій.
- Формула парабол
- Невласні інтеграли.
- Інтеграл від розривної функції.
- Геометричні застосування визначеного інтеграла. Обчислення площ плоских фігур.
- Знаходження площі криволінійного сектора.
- Обчислення довжини дуги кривої.
- Обчислення об'ємів тіл. Обчислення об'єму тіла за відомими площами його паралельних перетинів.
- Об'єм тіл обертання.
- Площа поверхні тіла обертання.
- Функції декількох змінних
- Похідні й диференціали функцій декількох змінних.
- Повний приріст і повний диференціал.
- Геометричний зміст повного диференціала. Дотична площина й нормаль до поверхні.
- Наближені обчислення за допомогою повного диференціала.
- Частинні похідні вищих порядків.
- Екстремум функції декількох змінних.
- Умовний екстремум.
- Похідна за напрямком.
- Градієнт.
- Зв'язок градієнта з похідною за напрямком.
- Кратні інтеграли.
- Подвійні інтеграли.
- Умови існування подвійного інтеграла.
- Властивості подвійного інтеграла.
- Обчислення подвійного інтеграла.
- Заміна змінних у подвійному інтегралі.
- Подвійний інтеграл у полярних координатах.
- Потрійний інтеграл.
- Заміна змінних у потрійному інтегралі.
- Циліндрична система координат.
- Сферична система координат.
- Геометричні й фізичні застосування кратних інтегралів.