Визначений інтеграл.
Нехай на відрізку [a, b] задана неперервна функція f(x).
y
M
m
O a xi b x
Позначимо m і M найменше й найбільше значення функції на відрізку [a, b]. Розіб'ємо відрізок [a, b] на частини (необов'язково однакові) n точками.
x0 < x1 < x2 < … < xn
Тоді x1 – x0 = x1, x2 – x1 = x2, … ,xn – xn–1 = xn;
На кожному з отриманих відрізків знайдемо найменше й найбільше значення функції.
[x0, x1] m1, M1; [x1, x2] m2, M2; … [xn–1, xn] mn, Mn...
Складемо суми:
n = m1x1 + m2x2 + … +mnxn =
n = M1x1 + M2x2 + … + Mnxn =
Сума називається нижньою інтегральною сумою, а сума – верхньою інтегральною сумою.
Оскільки , то , а .
Усередині кожного відрізка виберемо деяку точку i.
x0 < 1 < x1, x1 < < x2, … , xn–1 < < xn...
Знайдемо значення функції в цих точках і складемо вираз, що називається інтегральною сумою для функції f(x) на відрізку [a, b].
Sn = f(1)x1 + f(2)x2 + … + f(n)xn =
Тоді можна записати:
Отже,
Геометрично це представляється в такий спосіб: графік функції f(x) обмежений зверху описаною ламаною лінією, а знизу – вписаною ламаною.
Позначимо max xi – найбільший відрізок розбивки, а min xi – найменший. Якщо max xi 0, то число відрізків розбивки відрізка [a, b] прямує до нескінченності.
Якщо , то
Визначення: Якщо при будь-яких розбивках відрізка [a, b] таких, що max xi0 і довільному виборі точок i інтегральна сума прямує до границі S, що називається визначеним інтегралом від f (x) на відрізку [a, b].
Позначення :
а – нижня границя, b – верхня границя, х – змінна інтегрування, [a, b] – відрізок інтегрування.
Визначення: Якщо для функції f (x) існує границя то функція називається інтегрованою на відрізку [a, b].
Також вірні твердження:
Теорема: Якщо функція f(x) неперервна на відрізку [a, b], то вона інтегрована на цьому відрізку.
- Диференціальне числення функції однієї змінної. Похідна функції, її геометричний і фізичний зміст.
- Однобічні похідні функції в точці.
- Похідна показниково-степеневої функції.
- Похідна оберненої функцій.
- Диференціал функції.
- Формула Тейлора.
- Формула Маклорена.
- Подання деяких елементарних функцій за формулою Тейлора.
- Застосування диференціала до наближених обчислень.
- Теореми про середнє. Теорема Ролля.
- Теорема Лагранжа.
- Теорема Коші.
- Розкриття невизначеностей. Правило Лопіталя.
- Точки екстремуму.
- Дослідження функції на екстремум за допомогою похідних вищих порядків.
- Опуклість і увігнутість кривої. Точки перегину.
- Асимптоти.
- Вертикальні асимптоти.
- Похилі асимптоти.
- Векторна функція скалярного аргументу.
- Властивості похідної векторної функції скалярного аргументу.
- Параметричне задання функції.
- Рівняння деяких типів кривих у параметричній формі. Коло.
- Циклоїда.
- Астроїда.
- Похідна функції, заданої параметрично.
- Кривизна плоскої кривої.
- Властивості еволюти.
- Кривизна просторової кривої.
- Про формули Френе.
- Інтегральне числення. Первісна функція.
- Невизначений інтеграл.
- Методи інтегрування.
- Безпосереднє інтегрування.
- Спосіб підстановки (заміни змінних).
- Інтегрування частинами.
- Інтегрування елементарних дробів.
- Інтегрування раціональних функцій. Інтегрування раціональних дробів.
- Інтегрування деяких тригонометричних функцій.
- Інтеграл виду .
- Інтеграл виду , якщо функція r є непарною відносно cos X.
- Інтегрування деяких ірраціональних функцій.
- Інтеграл виду де n – натуральне число.
- Інтегрування біноміальних диференціалів.
- Інтеграли виду .
- 1 Спосіб. Тригонометрична підстановка.
- 2 Спосіб. Підстановки Ейлера. (1707–1783)
- 3 Спосіб. Метод невизначених коефіцієнтів.
- Кілька прикладів інтегралів, що не виражаються через елементарні функції.
- Визначений інтеграл.
- Властивості визначеного інтеграла.
- Обчислення визначеного інтеграла.
- Заміна змінних.
- Інтегрування частинами.
- Наближене обчислення визначеного інтеграла.
- Формула прямокутників.
- Формула трапецій.
- Формула парабол
- Невласні інтеграли.
- Інтеграл від розривної функції.
- Геометричні застосування визначеного інтеграла. Обчислення площ плоских фігур.
- Знаходження площі криволінійного сектора.
- Обчислення довжини дуги кривої.
- Обчислення об'ємів тіл. Обчислення об'єму тіла за відомими площами його паралельних перетинів.
- Об'єм тіл обертання.
- Площа поверхні тіла обертання.
- Функції декількох змінних
- Похідні й диференціали функцій декількох змінних.
- Повний приріст і повний диференціал.
- Геометричний зміст повного диференціала. Дотична площина й нормаль до поверхні.
- Наближені обчислення за допомогою повного диференціала.
- Частинні похідні вищих порядків.
- Екстремум функції декількох змінних.
- Умовний екстремум.
- Похідна за напрямком.
- Градієнт.
- Зв'язок градієнта з похідною за напрямком.
- Кратні інтеграли.
- Подвійні інтеграли.
- Умови існування подвійного інтеграла.
- Властивості подвійного інтеграла.
- Обчислення подвійного інтеграла.
- Заміна змінних у подвійному інтегралі.
- Подвійний інтеграл у полярних координатах.
- Потрійний інтеграл.
- Заміна змінних у потрійному інтегралі.
- Циліндрична система координат.
- Сферична система координат.
- Геометричні й фізичні застосування кратних інтегралів.