logo search
lect2

Властивості еволюти.

Теорема 1: Нормаль до даної кривої є дотичною до її еволюти.

Теорема 2: Модуль різниці радіусів кривизни в будь-яких точках кривої дорівнює модулю довжини відповідної еволюти.

C3

C2

C1

R1 R2 R3

M1

M’1 M2 M3

M’2

M’3

Треба відзначити, що будь-якій еволюті відповідає нескінченне число евольвент.

Зазначені вище властивості можна проілюструвати в такий спосіб: якщо на еволюту натягнута нитка, то евольвента є траєкторною лінією кінця нитки при її змотуванні або розмотуванні за умови, що нитка перебуває в натягнутому стані.

Приклад: Знайти рівняння еволюти кривою, заданої рівняннями:

Рівняння еволюти:

Остаточно: – це рівняння кола із центром на початку координат радіуса а.

Вихідна крива виходить свого роду розгорненням кола.

Нижче наведені графіки вихідної кривої і її еволюти.