Векторна функція скалярного аргументу.
z
A(x, y, z)
y
х
Нехай деяка крива в просторі заданий параметрично:
x = (t); y = (t); z = f(t);
Радіус-вектор довільної точки кривої: .
Таким чином, радіус-вектор точки кривої може розглядатися як деяка векторна функція скалярного аргументу t. При зміні параметра t змінюється величина і напрямок вектора .
Запишемо співвідношення для деякої точки t0:
Тоді вектор – границя функції (t). .
Очевидно, що
, тоді
.
Щоб знайти похідну векторної функції скалярного аргументу, розглянемо приріст радіус-вектора при деякому прирості параметра t.
; ;
або, якщо існують похідні (t), (t), f (t), то
Цей вираз – вектор похідна вектора .
Якщо є рівняння кривої:
x = (t); y = (t); z = f(t);
то в довільній точці кривої А(xА, yА, zА) з радіус-вектором
можна провести пряму з рівнянням
Оскільки похідна – вектор, спрямований по дотичній до кривої, то
.
- Диференціальне числення функції однієї змінної. Похідна функції, її геометричний і фізичний зміст.
- Однобічні похідні функції в точці.
- Похідна показниково-степеневої функції.
- Похідна оберненої функцій.
- Диференціал функції.
- Формула Тейлора.
- Формула Маклорена.
- Подання деяких елементарних функцій за формулою Тейлора.
- Застосування диференціала до наближених обчислень.
- Теореми про середнє. Теорема Ролля.
- Теорема Лагранжа.
- Теорема Коші.
- Розкриття невизначеностей. Правило Лопіталя.
- Точки екстремуму.
- Дослідження функції на екстремум за допомогою похідних вищих порядків.
- Опуклість і увігнутість кривої. Точки перегину.
- Асимптоти.
- Вертикальні асимптоти.
- Похилі асимптоти.
- Векторна функція скалярного аргументу.
- Властивості похідної векторної функції скалярного аргументу.
- Параметричне задання функції.
- Рівняння деяких типів кривих у параметричній формі. Коло.
- Циклоїда.
- Астроїда.
- Похідна функції, заданої параметрично.
- Кривизна плоскої кривої.
- Властивості еволюти.
- Кривизна просторової кривої.
- Про формули Френе.
- Інтегральне числення. Первісна функція.
- Невизначений інтеграл.
- Методи інтегрування.
- Безпосереднє інтегрування.
- Спосіб підстановки (заміни змінних).
- Інтегрування частинами.
- Інтегрування елементарних дробів.
- Інтегрування раціональних функцій. Інтегрування раціональних дробів.
- Інтегрування деяких тригонометричних функцій.
- Інтеграл виду .
- Інтеграл виду , якщо функція r є непарною відносно cos X.
- Інтегрування деяких ірраціональних функцій.
- Інтеграл виду де n – натуральне число.
- Інтегрування біноміальних диференціалів.
- Інтеграли виду .
- 1 Спосіб. Тригонометрична підстановка.
- 2 Спосіб. Підстановки Ейлера. (1707–1783)
- 3 Спосіб. Метод невизначених коефіцієнтів.
- Кілька прикладів інтегралів, що не виражаються через елементарні функції.
- Визначений інтеграл.
- Властивості визначеного інтеграла.
- Обчислення визначеного інтеграла.
- Заміна змінних.
- Інтегрування частинами.
- Наближене обчислення визначеного інтеграла.
- Формула прямокутників.
- Формула трапецій.
- Формула парабол
- Невласні інтеграли.
- Інтеграл від розривної функції.
- Геометричні застосування визначеного інтеграла. Обчислення площ плоских фігур.
- Знаходження площі криволінійного сектора.
- Обчислення довжини дуги кривої.
- Обчислення об'ємів тіл. Обчислення об'єму тіла за відомими площами його паралельних перетинів.
- Об'єм тіл обертання.
- Площа поверхні тіла обертання.
- Функції декількох змінних
- Похідні й диференціали функцій декількох змінних.
- Повний приріст і повний диференціал.
- Геометричний зміст повного диференціала. Дотична площина й нормаль до поверхні.
- Наближені обчислення за допомогою повного диференціала.
- Частинні похідні вищих порядків.
- Екстремум функції декількох змінних.
- Умовний екстремум.
- Похідна за напрямком.
- Градієнт.
- Зв'язок градієнта з похідною за напрямком.
- Кратні інтеграли.
- Подвійні інтеграли.
- Умови існування подвійного інтеграла.
- Властивості подвійного інтеграла.
- Обчислення подвійного інтеграла.
- Заміна змінних у подвійному інтегралі.
- Подвійний інтеграл у полярних координатах.
- Потрійний інтеграл.
- Заміна змінних у потрійному інтегралі.
- Циліндрична система координат.
- Сферична система координат.
- Геометричні й фізичні застосування кратних інтегралів.