VI. Упражнения на нахождение длины вектора и величины угла между векторами.
Известно, что с = а + b ,(а9Ь) = 30°, | а | = 5 см, | Ь | = 3 см. Найдите | с |.
Известно, что векторы а + 2Ъ и 5а -4Ъ взаимно перпендикулярны. Какой угол образуют векторы а я Ъ , если | а | = | Ъ | = 1?
В процессе выполнения этих упражнений вырабатываются критерии использования векторов для доказательства различных зависимостей. Векторы эффективны при доказательстве: а) параллельности прямых и отрезков; б) принадлежности трёх точек одной прямой; в) перпендикулярности прямых и отрезков и т. д.
Для того чтобы учащиеся научились решать задачи векторным методом, необходимо, прежде всего, научить их решать опорные задачи, при решении которых непосредственно используются эвристики, представленные в таблице 15.
Историческая справка
Считается, что вектор как самостоятельный объект появился в 40-е гг. XIX в., хотя действия с отрезками выполнялись и ранее. Так, представление величин отрезками имело место уже в древнегреческой математике. В «Началах» Евклида изложены основы древнегреческого геометрического исчисления. Сложение величин сводилось к сложению отрезков, умножение величин - к построению прямоугольника на соответствующих отрезках, деление - к операции «приложения» геометрических фигур. Также ненаправленными отрезками оперировал Декарт. Но уже немецким ученым Г. Лейбницем была выдвинута идея построения векторного исчисления, близкого к современному. В XVI - XVII вв. Леонардо да Винчи, Галилео Галилей, Иоганн Кеплер пользовались направленными отрезками для наглядного представления сил в физике и астрономии. Так поступал и Симон Стевин, который, изучая равновесие тел на наклонной плоскости, дошел до разложения силы на составляющие
232
и открыл закон параллелограмма сил. Однако в рассматриваемую эпоху в естествознании еще не оформилось четко понятие векторной величины, а идея алгебраических действий с направленными отрезками лишь зарождалась. Развитие настоящего векторного исчисления относится к XIX в. Г. И. Глейзер в работе [5] выделил три направления развития векторного исчисления: геометрическое (исчисление отрезков), физическое (исследование векторных величин, встречающихся в естествознании), алгебраическое (расширение понятия операции при создании современной алгебры). Развитие первого направления связано с именем Каспара Весселя (Норма'ия). Векторная алгебра на плоскости (двумерное векторное пространство) построена им почти так же, как она излагается в современных учебниках. Отрезки, имеющие любое направив же, были введены JI. Карно (Франция, 1803), он же занимался и действиями с направленными отрезками, позже его идеи были систематизированы немецким математиком А. Мебиусом. У Карно отсутствует систематическое исчисление направленных отрезков, содержащееся у Вссселя. Однако главный труд последнего «Опыт об аналитическом представлении направит ия и его применениях» не оказал никакого влияния на развитие векторного исчисления, так кик на протяжении целого столетия ученые не обращали на него внимания, в то время как пони гис геометрического количества Карно, под которым он понимал в основном направленный о I резок, стали употреблять передовые математики уже в самом начале XIX в. Некоторые вве- асчшыс Карно термины и символы, в частности обозначение вектора с помощью черты наверчу ( А В, С), сохранились и в наши дни. Наиболее значительный вклад в развитие векторного исчисления внес ирландский математик У. Гамильтон в связи с изложением теории комплексных чисел и учения о ква- к-рн ионах (1853). Именно Гамильтон стал применять понятия «вектор», «скаляр» (от латинского skala - лестница; подобно ступенькам лестницы можно упорядочить действительные числа, вводя понятия «больше» и «меньше», но не комплексные числа, не векторы), «скалярное произведение», «векторное произведение». Независимо от Гамильтона к аналогичным результатам пришел и немецкий ученый Г. Грассман. В 1844 г. в работе «Учение о про- 1ИЖСШгости» он впервые излагает учение об «-мерном евклидовом пространстве. Вместо к*рминов «скалярное произведение», «векторное произведение» он использует соответствию «внутреннее» и «внешнее». Векторы Грассман обозначал жирными буквами латинско- ю алфавита. Принятое сейчас обозначение вектора г ввел в 1853 г. О. Коши, а единичные иск горы i,j, к в том же году Гамильтон. Систематически применял векторное исчисление для потребностей естествознания Л ж Максвелл, а современный вид векторному исчислению придали в конце XIX в. американский физик Дж. Гиббс и английский физик О. Хевисайд. Систематическое изучение векторов и координат в курсе геометрии основной школы началось в последней трети XX в. в учебниках А. Н. Колмогорова. Изложение учебного ма- юриала осуществлялось в них на основе идеи геометрических преобразований, поэтому век- юр «водился как параллельный перенос, координатный метод в основной школе не изучался (миодились только координаты вектора), этот вопрос подробно рассматривался в старшей школе (в учебниках 3. А. Скопеца). Вопросы и задания Как трактуется вектор в математике? Как определяют понятие «равные векторы» авторы школьных учеб- ми кон геометрии? Опишите методику введения понятия равных векторов. 11|ж недите примеры на усвоение этого понятия. Как познакомить учащихся с понятием координат вектора? Сформулируйте признак равенства векторов (в разных формах: 233
- Цели, содержание и структура курса математики 5-6 классов
- Значение и место учения о числе в курсе математики общеобразовательной школы
- 5 Класс
- 6 Класс
- 3. Различные пути расширения понятия числа
- 4. Методика изучения натуральных чисел
- 4. Методика изучения натуральных чисел
- 5. Основные вопросы методики изучения дробей
- 5. Основные вопросы методики изучения дробей
- 6. Методика изучения положительных и отрицательных чисел
- I. Основные типы преобразований и этапы их изучения
- III этап. Организация целостной системы преобразований (синтез).
- Буквенной части слагаемых пока остается первой.
- 1. Содержание и роль линии уравнений и неравенств в современном школьном курсе математики
- 2. Основные понятия линии уравнений и неравенств
- I * hi лаже он и возникает по ходу обсуждения процесса решения, то ответ на не-
- Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.
- * Последовательность изучения линии уравнений и неравенств
- I )гапы изучения линии уравнений, неравенств и их систем в основной школе
- 1* Курсе математики 5 класса понятие уравнения трактуется аналогично.
- Основные классы неравенств изучаются сразу вслед за изучением со- »»I мотствующих классов уравнений.
- I Ъшить уравнение - это значит найти все его корни или установить, что их нет.
- Решение квадратных уравнений и неравенств
- Il Графический метод (I способ)
- Графический метод
- Системы уравнений с двумя переменными, в которых одно или оба уравнения второй степени
- Графический метод
- Графический метод
- Графический метод
- Графический метод
- Графический метод
- Графический метод
- Il Графический метод
- Il Графический метод
- Графический метод
- Графический метод
- Графический метод
- Графический метод
- 1. Цели обучения решению текстовых задач
- 2. Пропедевтика алгебраического и геометрического методов решения текстовых задач
- 3. Этапы решения задач на составление уравнений и их реализация
- Этап {перевод задачи на геометрический язык).
- Этап (решение задачи на геометрическом языке).
- 1. Из истории введения понятия функциональной зависимости в школьный курс математики
- 2. Различные трактовки понятия функции
- 3. Методика введения понятия функции
- Этап. Мотивация введетя понятия.
- Исследовать функцию на основные свойства.
- Использовать изученные свойства функций при решении различных задач, в частности уравнений и неравенств.
- Влияние коэффициентов hub на поведение функции
- Взаимное расположение графиков линейных функции
- Б. Интеграция аналитического и графического методов в изучении квадратичной функции
- 1. Цели и задачи курса геометрии основной школы
- 2. Содержание обучения геометрии в 7-9 классах
- 3. Логические основы изложения геометрии в 7-9 классах
- Аксиомы принадлежности
- Аксиомы порядка
- Аксиомы измерения отрезков и углов
- Рекомендуемая литература
- 1. Методика изучения основных свойств простейших геометрических фигур
- 1. Учебник а. В. Погорелова: § 1 «Основные свойства простейших геометрических фигур»,
- Определения «через ближайший род и видовые отличия»
- Измерение отрезков и углов
- 3. Учебник а. Д. Александрова и др,: глава I «Начала геометрииж
- 2. Методика формирования геометрических понятий
- 3, Обучение решению задач на первых уроках геометрии
- II группа
- 1. Различные подходы к формированию понятия равенства фигур
- Что нужно знать, чтобы утверждать равенство треугольников abc и dek1
- На рисунке 55 изображено два равных треуголь- ника. Написать равенство этих треугольников, обозначив их вершины.
- Если разносторонние треугольники abc и dkm
- 11Ри иодом пример.
- I (сн тральное место в изучении равных треугольников занимают признаём риионота треугольников.
- Доказательство:
- Доказательство:
- Треугольники вас и cdb равны. Напишите все соотношения, из ко- торых следует равенство указанных треугольников.
- Напишите соотношение между элемен- тами треугольников abc и adc, из которых следовало бы их равенство.
- Какие методические подходы существуют к введению понятия ранено гва фигур в школьном курсе геометрии? Какой подход, на Ваш взгляд, милмется наиболее удачным?
- В чем особенности введения понятия равных треугольников в разных учебниках геометрии?
- Приведите примеры упражнений на усвоение понятия равных треугольников.
- I. Цели и этапы изучения взаимного расположения прямых на плоскости
- 1 Различные подходы к введению понятия параллельности прямых на плоскости.
- I. Методика изучения признаков параллельности прямых.
- 1, Цели и этапы изучения взаимного расположения прямых на плоскости
- 2. Различные подходы к введению понятия параллельности прямых на плоскости
- 4. Методические замечания к изучению перпендикулярности прямых на плоскости
- В данной плоскости через точку вне данной прямой можно провести только одну прямую, параллельную данной.
- Сумма внутренних углов треугольника равна 2d.
- 1. Различные подходы к изучению многоугольников
- 2. Методика изучения четырехугольников
- Если в четырехугольнике противоположные стороны попарно равны,
- Если в четырехугольнике диагонали пересекаются и точкой пересечении делятся пополам, то этот четырехугольник параллелограмм.
- Какие из систем неравенств задают на плоскости трапецию и почему? Покажите штриховкой множество точек плоскости, заданное системой неравенств:
- 1 H найти площадь трапеции.
- 1, Имеет1 ли ось симметрии фигура, заданная системой неравенств:
- Верно ли утверждение: а) любой правильный многоугольник является выпуклым; б) любой выпуклый многоугольник является правильным?
- Чему равны градусные меры углов: а) правильного пятиугольника; б) правильного двенадцатиугольника; в) правильного тридцатишестиугольника?
- Множество направленных отрезков плоскости.
- Множество классов направленных отрезков плоскости.
- Множество параллельных переносов плоскости.
- Начертите равнобочную трапецию: а) существуют ли векторы, определяемые её вершинами и равные по длине? б) Сколько пар сонаправленных векторов задают вершины трапеции?
- Сколько пар сонаправленных (противоположно направленных) векторов определяют вершины параллелограмма?
- Начертить параллелограмм, обозна- чить его вершины и написать все равные ме- жду собой векторы, началом и концом кото- рых являются вершины параллелограмма.
- Векторы а и ъ равны, что следует из этого?
- 3. Методика изучения действий с векторами
- II. Умножение вектора на число
- Учебник геометрии а. В. Погорелова.
- Учебник геометрии j1. С. Атанасяна и Др.
- Построить вектор, представляющий сумму
- 4. Методика обучения решению задач с помощью векторов
- 1. Дан многоугольник abcde. Представьте ad в виде суммы: а) двух; б) I рёх; в) четырех векторов, заданных вершинами этого многоугольника.
- Представьте вектор ав в виде суммы векторов ас, dc , bd .
- Вектор cDколлинеарен вектору ав и Выразите один век-
- Четырехугольник abcd - квадрат. Упростите выражение { ав - 3 вс)2,
- VI. Упражнения на нахождение длины вектора и величины угла между векторами.
- Какие действия с векторами изучаются в школьном курсе геометрии?
- Б) в треугольнике лвс известны длины всех сторон. Определить его углы.
- II кн. До н. Э.) уже фактически пользовался прямоугольными координатами.
- Простейшие задачи в координатах на плоскости
- Уравнения фигур на плоскости
- 4. Особенности применения метода координат
- 5. Методика формирования координатного метода решения задач
- Решение (координатный метод)
- Iэтап(оптимальный выбор прямоугольной системы координат). Выберем прямоугольную систему координат так, как показано на рис. 93.
- Этап (перевод задачи на координатный
- Так как м середина стороны вс, то л/
- Этап (решение задачи на координат- ном языке).
- Рекомендуемая литература
- Значение тригонометрических функций в школьном курсе математики и различные подходы к их изложению
- I ермипы «косинус», «котангенс» и др. Появились в XI—XVII вв.
- Этапы изучения линии уравнений, неравенств и их систем в
- Системы уравнений с двумя переменными, в которых
- Цели и этапы изучения взаимного расположения прямых на
- Различные подходы к введению понятии параллельности пря