Приведите примеры упражнений на усвоение понятия равных треугольников.
Разработайте методику изучения одного из признаков равенства тре- yi опьников, исходя из того, что организация изучения теоремы включает моти- 1ШИШ0, ознакомление с фактом, отраженным в теореме, усвоение содержания u-оремы, ознакомление со способом доказательства, доказательство теоремы, е(‘ применение, связь теоремы с ранее доказанными теоремами. Запишите дока- штельство теоремы в виде таблицы с двумя колонками: «Утверждения» и ««(^основания».
Составьте (подберите) практические задачи на применение признаков рименетва треугольников.
Разработайте методику использования аналогии при составлении и решении задач по теме: «Признаки равенства треугольников».
Назовите компоненты умения применять признаки равенства треугольником н различных конкретных ситуациях.
Составьте (или подберите из учебников) по одной задаче на применение ьйждого признака равенства треугольников. Разработайте методику решения этих 1йдич и выделите умения, на формирование которых они направлены.
Рекомендуемая литература
I I* г I о и а, Г. В., В и н о г р а д о в а, Л. В. Как учить решению задач на признаки равенства | реугольников / Г.В. Белова, Л.В. Виноградова . - Математика в школе. - 1999. - № 2. - С.
IИ ? I.
' I у р т о в о й, О. С. Некоторые приемы, облегчающие решение геометрических задач /
< и I уртовой. - Математика в школе. - 1996. - № 2. - С. 61 - 65. t I we и, В. А. Г еометрия. 7 класс / В. А. Гусев. - М.; «Тид «Русское слово - РС», 2003. - 240 с. i 'Inf юра горные и практические работы по методике преподавания математики: Учеб. пособие 'им е гудемтов физ.-мат. спец. пед. ин-тов / Е. И. Лжценко, К. В. Зобкова, Т. Ф. Кириченко и др.;
11*"I |ч\д. Н. И. Лященко. -М.: Просвещение, 1988.-223 с.
* N1 ii к а [) о и а, Л. В. Математические диктанты в VII - VIII классах. - Математика в школе. - l'W4. №3.-С. 27-30.
Мгт.чика и технология обучения математике. Курс лекций: пособие для вузов / под научн. ред. II 11 (' I ефгшовой, II. С. Подходовой. - М.: Дрофа, 2005. - 416 с.
187
Методика преподавания математики в средней школе: Частная методика: Учеб. пособие для студентов пед, ин-тов по физ.-мат. спец. / А.Я. Блох, В А. Гусев, Г.В. Дорофеев и др.; Сост. В.И. М и ш и н. - М.: Просвещение, 1987. - 416 с. О р л о в, В. В. Организация обучения поиску решения планиметрических задач / В.В. Орлов - Математика в школе. - 1996. -№ 1. - С. 5 ~ 7. Практикум по методике преподавания математики в средней школе: Учеб. пособие для студентов физ.-мат. фак. пед. ин-тов / Т. В. Автономова, С. Б. Верченко, В. А. Гусев и др.; Под ред. В. И. Мишина - М.: Просвещение, 1993. -192 с. С а р а н ц е в, Г. И. Методика преподавания геометрии в девятилетней школе: Учебное пособие для студентов физ.-мат. факультетов пед. ин-тов / Г.И. Саранцев. - Саранск: Мор- дов. гос. пед. ин-т, 1992. - 130 с. С а р а н ц е в, Г. И. Обучение математическим доказательствам в школе: Кн. для учителя / Г.И. Саранцев. - М.: Просвещение, 2000. - 173 с. С а р а н ц е в, Г. И., Л у н и н а, Л. С. Обучение методу аналогии / Г.И. Саранцев, Л.С. Лунина // Математика в школе. - 1989. - № 4. - С. 42 - 46. Т е с л е н к о, И. Ф. О преподавании геометрии в средней школе: Кн. для учителя / И.Ф. Тесленко. - М.: Просвещение, 1985. Школьные учебники геометрии разных авторов (см. лит-ру к лекции № 7). 188
- Цели, содержание и структура курса математики 5-6 классов
- Значение и место учения о числе в курсе математики общеобразовательной школы
- 5 Класс
- 6 Класс
- 3. Различные пути расширения понятия числа
- 4. Методика изучения натуральных чисел
- 4. Методика изучения натуральных чисел
- 5. Основные вопросы методики изучения дробей
- 5. Основные вопросы методики изучения дробей
- 6. Методика изучения положительных и отрицательных чисел
- I. Основные типы преобразований и этапы их изучения
- III этап. Организация целостной системы преобразований (синтез).
- Буквенной части слагаемых пока остается первой.
- 1. Содержание и роль линии уравнений и неравенств в современном школьном курсе математики
- 2. Основные понятия линии уравнений и неравенств
- I * hi лаже он и возникает по ходу обсуждения процесса решения, то ответ на не-
- Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.
- * Последовательность изучения линии уравнений и неравенств
- I )гапы изучения линии уравнений, неравенств и их систем в основной школе
- 1* Курсе математики 5 класса понятие уравнения трактуется аналогично.
- Основные классы неравенств изучаются сразу вслед за изучением со- »»I мотствующих классов уравнений.
- I Ъшить уравнение - это значит найти все его корни или установить, что их нет.
- Решение квадратных уравнений и неравенств
- Il Графический метод (I способ)
- Графический метод
- Системы уравнений с двумя переменными, в которых одно или оба уравнения второй степени
- Графический метод
- Графический метод
- Графический метод
- Графический метод
- Графический метод
- Графический метод
- Il Графический метод
- Il Графический метод
- Графический метод
- Графический метод
- Графический метод
- Графический метод
- 1. Цели обучения решению текстовых задач
- 2. Пропедевтика алгебраического и геометрического методов решения текстовых задач
- 3. Этапы решения задач на составление уравнений и их реализация
- Этап {перевод задачи на геометрический язык).
- Этап (решение задачи на геометрическом языке).
- 1. Из истории введения понятия функциональной зависимости в школьный курс математики
- 2. Различные трактовки понятия функции
- 3. Методика введения понятия функции
- Этап. Мотивация введетя понятия.
- Исследовать функцию на основные свойства.
- Использовать изученные свойства функций при решении различных задач, в частности уравнений и неравенств.
- Влияние коэффициентов hub на поведение функции
- Взаимное расположение графиков линейных функции
- Б. Интеграция аналитического и графического методов в изучении квадратичной функции
- 1. Цели и задачи курса геометрии основной школы
- 2. Содержание обучения геометрии в 7-9 классах
- 3. Логические основы изложения геометрии в 7-9 классах
- Аксиомы принадлежности
- Аксиомы порядка
- Аксиомы измерения отрезков и углов
- Рекомендуемая литература
- 1. Методика изучения основных свойств простейших геометрических фигур
- 1. Учебник а. В. Погорелова: § 1 «Основные свойства простейших геометрических фигур»,
- Определения «через ближайший род и видовые отличия»
- Измерение отрезков и углов
- 3. Учебник а. Д. Александрова и др,: глава I «Начала геометрииж
- 2. Методика формирования геометрических понятий
- 3, Обучение решению задач на первых уроках геометрии
- II группа
- 1. Различные подходы к формированию понятия равенства фигур
- Что нужно знать, чтобы утверждать равенство треугольников abc и dek1
- На рисунке 55 изображено два равных треуголь- ника. Написать равенство этих треугольников, обозначив их вершины.
- Если разносторонние треугольники abc и dkm
- 11Ри иодом пример.
- I (сн тральное место в изучении равных треугольников занимают признаём риионота треугольников.
- Доказательство:
- Доказательство:
- Треугольники вас и cdb равны. Напишите все соотношения, из ко- торых следует равенство указанных треугольников.
- Напишите соотношение между элемен- тами треугольников abc и adc, из которых следовало бы их равенство.
- Какие методические подходы существуют к введению понятия ранено гва фигур в школьном курсе геометрии? Какой подход, на Ваш взгляд, милмется наиболее удачным?
- В чем особенности введения понятия равных треугольников в разных учебниках геометрии?
- Приведите примеры упражнений на усвоение понятия равных треугольников.
- I. Цели и этапы изучения взаимного расположения прямых на плоскости
- 1 Различные подходы к введению понятия параллельности прямых на плоскости.
- I. Методика изучения признаков параллельности прямых.
- 1, Цели и этапы изучения взаимного расположения прямых на плоскости
- 2. Различные подходы к введению понятия параллельности прямых на плоскости
- 4. Методические замечания к изучению перпендикулярности прямых на плоскости
- В данной плоскости через точку вне данной прямой можно провести только одну прямую, параллельную данной.
- Сумма внутренних углов треугольника равна 2d.
- 1. Различные подходы к изучению многоугольников
- 2. Методика изучения четырехугольников
- Если в четырехугольнике противоположные стороны попарно равны,
- Если в четырехугольнике диагонали пересекаются и точкой пересечении делятся пополам, то этот четырехугольник параллелограмм.
- Какие из систем неравенств задают на плоскости трапецию и почему? Покажите штриховкой множество точек плоскости, заданное системой неравенств:
- 1 H найти площадь трапеции.
- 1, Имеет1 ли ось симметрии фигура, заданная системой неравенств:
- Верно ли утверждение: а) любой правильный многоугольник является выпуклым; б) любой выпуклый многоугольник является правильным?
- Чему равны градусные меры углов: а) правильного пятиугольника; б) правильного двенадцатиугольника; в) правильного тридцатишестиугольника?
- Множество направленных отрезков плоскости.
- Множество классов направленных отрезков плоскости.
- Множество параллельных переносов плоскости.
- Начертите равнобочную трапецию: а) существуют ли векторы, определяемые её вершинами и равные по длине? б) Сколько пар сонаправленных векторов задают вершины трапеции?
- Сколько пар сонаправленных (противоположно направленных) векторов определяют вершины параллелограмма?
- Начертить параллелограмм, обозна- чить его вершины и написать все равные ме- жду собой векторы, началом и концом кото- рых являются вершины параллелограмма.
- Векторы а и ъ равны, что следует из этого?
- 3. Методика изучения действий с векторами
- II. Умножение вектора на число
- Учебник геометрии а. В. Погорелова.
- Учебник геометрии j1. С. Атанасяна и Др.
- Построить вектор, представляющий сумму
- 4. Методика обучения решению задач с помощью векторов
- 1. Дан многоугольник abcde. Представьте ad в виде суммы: а) двух; б) I рёх; в) четырех векторов, заданных вершинами этого многоугольника.
- Представьте вектор ав в виде суммы векторов ас, dc , bd .
- Вектор cDколлинеарен вектору ав и Выразите один век-
- Четырехугольник abcd - квадрат. Упростите выражение { ав - 3 вс)2,
- VI. Упражнения на нахождение длины вектора и величины угла между векторами.
- Какие действия с векторами изучаются в школьном курсе геометрии?
- Б) в треугольнике лвс известны длины всех сторон. Определить его углы.
- II кн. До н. Э.) уже фактически пользовался прямоугольными координатами.
- Простейшие задачи в координатах на плоскости
- Уравнения фигур на плоскости
- 4. Особенности применения метода координат
- 5. Методика формирования координатного метода решения задач
- Решение (координатный метод)
- Iэтап(оптимальный выбор прямоугольной системы координат). Выберем прямоугольную систему координат так, как показано на рис. 93.
- Этап (перевод задачи на координатный
- Так как м середина стороны вс, то л/
- Этап (решение задачи на координат- ном языке).
- Рекомендуемая литература
- Значение тригонометрических функций в школьном курсе математики и различные подходы к их изложению
- I ермипы «косинус», «котангенс» и др. Появились в XI—XVII вв.
- Этапы изучения линии уравнений, неравенств и их систем в
- Системы уравнений с двумя переменными, в которых
- Цели и этапы изучения взаимного расположения прямых на
- Различные подходы к введению понятии параллельности пря