3. Методика изучения действий с векторами
Рассмотрим, как изучаются в разных учебниках действия с векторами.
L Сложение и вычитание векторов
L Учебник геометрии А. В. Погорелова.
Как уже отмечалось нами, в этом учебнике в качестве определений ис- пользуются координатные модели. Поэтому сумма векторов, произведение век- тора на число, скалярное произведение векторов определяются через координа- ты этих векторов. Однако вслед за координатным определением в учебнике до- казывается теорема, вскрывающая геометрическую суть векторного отношения.
Суммой векторов а (а\\ а2) и Ь(Ъ\, Ъ2) называется вектор с (а\ + Ъ\\ а2 + Ь2).
Из определения суммы векторов, признака равенства векторов и свойств сложения действительных чисел следуют все свойства сложения векторов.
Такое определение суммы векторов позволяет легко обосновать свойства сложения векторов, но оно не указывает способа построения суммы двух данных векторов. Один из таких способов дает теорема:
Теорема. Каковы бы ни были точки А, В, С имеет место равенство АВ + ВС = АС,
(Следует заметить, что, говоря о построении суммы двух векторов, мы имеем в виду построение направленного отрезка, изображающего вектор- сумму этих векторов.)
В процессе доказательства теоремы устанавли- вается, что формула АВ + ВС ~ АС (рис. 80) выра- жает так называемое «правило треугольника» для
Рис. 80 / * -
сложения векторов (отрезок, изображающий вектор-
сумму, является стороной треугольника ABC, «замыкающей» ломаную ABC).
224
Изучение законов сложения векторов можно начать с выполнения соот- ветствующих заданий. Например, известно, что три точки О, А, В не лежат на одной прямой. Построить сумму векторов О А и следующими двумя способами: а) О А сложить с ОВ; б) ОБ сложить с О А. Сравнивая результаты, полученные при выполнении этой работы двумя способами, учащиеся приходят к выводу: получен один и тот же вектор-сумма. < лсдовательно, для сложения векторов имеет место переместительный закон. Доказательство соответствующей теоремы можно предложить учащимся изу- чить по учебнику, а затем записать его на доске и в тетрадях. Переместительное свойство сложения векторов обосновывает второй спо- гоГ> построения суммы двух векторов «правило параллелограмма», а сочетатель- ное свойство позволяет ввести понятие сложения нескольких векторов. Разностью векторов а {а\\ а2) и b(b\; Ь2) называется векторе (cj; с2) такой, что с + Ь = а. Обозначается с = а - b , тогдас{ = а\ -bh с2^а2-Ъъ Следует заметить, что способ построения разности двух векторов рас- смотрен здесь в задаче, поэтому решение этой задачи необходимо обсудить с У'ШЩИМИСЯ. Задача, Даны векторы с общим началом: АВ и АС. Докажите, что АС - АВ = ВС. Решение. Имеем АВ + ВС = АС, а это значит, что АС-АВ = ВС. Отсюда получается правило для построения разно- ly ' сти двух векторов. Чтобы построить вектор, равный разно- £ сти векторов а и b, надо отложить их от одной точки, то- гда вектор, направленный от вычитаемого к уменьшаемому и будет вектором разности а и Ъ (рис. 81). 2. Учебник геометрии JI. С. Атанасяна и др. Сумма векторов определяется в этом учебнике следующим образом. Пусть а и b - два вектора. Отметим произвольную точку А и отложим и пой точки вектор АВ, равный а. Затем от точки В отложим вектор ВС, ринный b . Вектор АС называется суммой векторов а и Ъ . Такое определение суммы векторов обладает хорошей наглядностью, -нм ко может быть мотивировано рассмотрением примера на перемещение ма- и'рмапмюй точки. Однако при этом громоздким является обоснование свойств » ножения векторов и независимости векторов от выбранной точки. Вычитание векторов авторы определяют как действие, обратное сложению. Важное место здесь занимает теорема о том, что для любых векторов а и /• гмрлиедливо соотношение а - Ъ= а +(-&). Эта теорема дает способ по- I роения разности векторов: чтобы вычесть из вектора а вектор b, надо сло- 'пнм, иск гор а с вектором, противоположным вектору Ъ . 225
- Цели, содержание и структура курса математики 5-6 классов
- Значение и место учения о числе в курсе математики общеобразовательной школы
- 5 Класс
- 6 Класс
- 3. Различные пути расширения понятия числа
- 4. Методика изучения натуральных чисел
- 4. Методика изучения натуральных чисел
- 5. Основные вопросы методики изучения дробей
- 5. Основные вопросы методики изучения дробей
- 6. Методика изучения положительных и отрицательных чисел
- I. Основные типы преобразований и этапы их изучения
- III этап. Организация целостной системы преобразований (синтез).
- Буквенной части слагаемых пока остается первой.
- 1. Содержание и роль линии уравнений и неравенств в современном школьном курсе математики
- 2. Основные понятия линии уравнений и неравенств
- I * hi лаже он и возникает по ходу обсуждения процесса решения, то ответ на не-
- Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.
- * Последовательность изучения линии уравнений и неравенств
- I )гапы изучения линии уравнений, неравенств и их систем в основной школе
- 1* Курсе математики 5 класса понятие уравнения трактуется аналогично.
- Основные классы неравенств изучаются сразу вслед за изучением со- »»I мотствующих классов уравнений.
- I Ъшить уравнение - это значит найти все его корни или установить, что их нет.
- Решение квадратных уравнений и неравенств
- Il Графический метод (I способ)
- Графический метод
- Системы уравнений с двумя переменными, в которых одно или оба уравнения второй степени
- Графический метод
- Графический метод
- Графический метод
- Графический метод
- Графический метод
- Графический метод
- Il Графический метод
- Il Графический метод
- Графический метод
- Графический метод
- Графический метод
- Графический метод
- 1. Цели обучения решению текстовых задач
- 2. Пропедевтика алгебраического и геометрического методов решения текстовых задач
- 3. Этапы решения задач на составление уравнений и их реализация
- Этап {перевод задачи на геометрический язык).
- Этап (решение задачи на геометрическом языке).
- 1. Из истории введения понятия функциональной зависимости в школьный курс математики
- 2. Различные трактовки понятия функции
- 3. Методика введения понятия функции
- Этап. Мотивация введетя понятия.
- Исследовать функцию на основные свойства.
- Использовать изученные свойства функций при решении различных задач, в частности уравнений и неравенств.
- Влияние коэффициентов hub на поведение функции
- Взаимное расположение графиков линейных функции
- Б. Интеграция аналитического и графического методов в изучении квадратичной функции
- 1. Цели и задачи курса геометрии основной школы
- 2. Содержание обучения геометрии в 7-9 классах
- 3. Логические основы изложения геометрии в 7-9 классах
- Аксиомы принадлежности
- Аксиомы порядка
- Аксиомы измерения отрезков и углов
- Рекомендуемая литература
- 1. Методика изучения основных свойств простейших геометрических фигур
- 1. Учебник а. В. Погорелова: § 1 «Основные свойства простейших геометрических фигур»,
- Определения «через ближайший род и видовые отличия»
- Измерение отрезков и углов
- 3. Учебник а. Д. Александрова и др,: глава I «Начала геометрииж
- 2. Методика формирования геометрических понятий
- 3, Обучение решению задач на первых уроках геометрии
- II группа
- 1. Различные подходы к формированию понятия равенства фигур
- Что нужно знать, чтобы утверждать равенство треугольников abc и dek1
- На рисунке 55 изображено два равных треуголь- ника. Написать равенство этих треугольников, обозначив их вершины.
- Если разносторонние треугольники abc и dkm
- 11Ри иодом пример.
- I (сн тральное место в изучении равных треугольников занимают признаём риионота треугольников.
- Доказательство:
- Доказательство:
- Треугольники вас и cdb равны. Напишите все соотношения, из ко- торых следует равенство указанных треугольников.
- Напишите соотношение между элемен- тами треугольников abc и adc, из которых следовало бы их равенство.
- Какие методические подходы существуют к введению понятия ранено гва фигур в школьном курсе геометрии? Какой подход, на Ваш взгляд, милмется наиболее удачным?
- В чем особенности введения понятия равных треугольников в разных учебниках геометрии?
- Приведите примеры упражнений на усвоение понятия равных треугольников.
- I. Цели и этапы изучения взаимного расположения прямых на плоскости
- 1 Различные подходы к введению понятия параллельности прямых на плоскости.
- I. Методика изучения признаков параллельности прямых.
- 1, Цели и этапы изучения взаимного расположения прямых на плоскости
- 2. Различные подходы к введению понятия параллельности прямых на плоскости
- 4. Методические замечания к изучению перпендикулярности прямых на плоскости
- В данной плоскости через точку вне данной прямой можно провести только одну прямую, параллельную данной.
- Сумма внутренних углов треугольника равна 2d.
- 1. Различные подходы к изучению многоугольников
- 2. Методика изучения четырехугольников
- Если в четырехугольнике противоположные стороны попарно равны,
- Если в четырехугольнике диагонали пересекаются и точкой пересечении делятся пополам, то этот четырехугольник параллелограмм.
- Какие из систем неравенств задают на плоскости трапецию и почему? Покажите штриховкой множество точек плоскости, заданное системой неравенств:
- 1 H найти площадь трапеции.
- 1, Имеет1 ли ось симметрии фигура, заданная системой неравенств:
- Верно ли утверждение: а) любой правильный многоугольник является выпуклым; б) любой выпуклый многоугольник является правильным?
- Чему равны градусные меры углов: а) правильного пятиугольника; б) правильного двенадцатиугольника; в) правильного тридцатишестиугольника?
- Множество направленных отрезков плоскости.
- Множество классов направленных отрезков плоскости.
- Множество параллельных переносов плоскости.
- Начертите равнобочную трапецию: а) существуют ли векторы, определяемые её вершинами и равные по длине? б) Сколько пар сонаправленных векторов задают вершины трапеции?
- Сколько пар сонаправленных (противоположно направленных) векторов определяют вершины параллелограмма?
- Начертить параллелограмм, обозна- чить его вершины и написать все равные ме- жду собой векторы, началом и концом кото- рых являются вершины параллелограмма.
- Векторы а и ъ равны, что следует из этого?
- 3. Методика изучения действий с векторами
- II. Умножение вектора на число
- Учебник геометрии а. В. Погорелова.
- Учебник геометрии j1. С. Атанасяна и Др.
- Построить вектор, представляющий сумму
- 4. Методика обучения решению задач с помощью векторов
- 1. Дан многоугольник abcde. Представьте ad в виде суммы: а) двух; б) I рёх; в) четырех векторов, заданных вершинами этого многоугольника.
- Представьте вектор ав в виде суммы векторов ас, dc , bd .
- Вектор cDколлинеарен вектору ав и Выразите один век-
- Четырехугольник abcd - квадрат. Упростите выражение { ав - 3 вс)2,
- VI. Упражнения на нахождение длины вектора и величины угла между векторами.
- Какие действия с векторами изучаются в школьном курсе геометрии?
- Б) в треугольнике лвс известны длины всех сторон. Определить его углы.
- II кн. До н. Э.) уже фактически пользовался прямоугольными координатами.
- Простейшие задачи в координатах на плоскости
- Уравнения фигур на плоскости
- 4. Особенности применения метода координат
- 5. Методика формирования координатного метода решения задач
- Решение (координатный метод)
- Iэтап(оптимальный выбор прямоугольной системы координат). Выберем прямоугольную систему координат так, как показано на рис. 93.
- Этап (перевод задачи на координатный
- Так как м середина стороны вс, то л/
- Этап (решение задачи на координат- ном языке).
- Рекомендуемая литература
- Значение тригонометрических функций в школьном курсе математики и различные подходы к их изложению
- I ермипы «косинус», «котангенс» и др. Появились в XI—XVII вв.
- Этапы изучения линии уравнений, неравенств и их систем в
- Системы уравнений с двумя переменными, в которых
- Цели и этапы изучения взаимного расположения прямых на
- Различные подходы к введению понятии параллельности пря