I (сн тральное место в изучении равных треугольников занимают признаём риионота треугольников.
11режде, чем, приступить к ознакомлению учащихся с этими признаками, мило пояснить термины «угол, прилежащий к стороне», «угол, противоле- •HiiiHii о тропе», «сторона, противолежащая углу», «угол, заключенный между миронами» и т.д.. Учащиеся не всегда могут указать угол, противолежащий MtHiMtirft о тропе тупоугольного треугольника (рис. 57).
11*1ио ню па чертеже продолжить стороны треугольника, заключающие й«{ннормП угол, и выяснить, что прилежащие стороны лежат на сторонах угла ‘ни ), а про гиполежащая углу сторона расположена внутри угла (рис. 58).
181
Ознакомление с признаками равенства треугольников можно осуществить посредством упражнения. Например, перед введением признака равенства треугольников по двум сторонам и углу между ними выполняется упражнение. 1. Постройте два треугольника ABC нАхВ\С\, у которых AB=A{Bi = 6cm,AC ~ А\С\ = 5 см, Z.A = ZA\ = 50°. Равны ли треугольники ABC и А\ВХС\1 Для того чтобы ответить на вопрос задачи, учащиеся должны (в рамках учебника А.В. Погорелова) измерить стороны ВС и В\С\, углы В, В\, С, С\ и сравнить результаты. Упражнение приведет таким образом к выводу, что указанные треугольники ABC и А\В\С\ равны. Так как выполнение этого упражнения требует проведения различных измерений, а значит, и времени, то целесообразнее предложить его в качестве домашнего задания, а на уроке обсудить результаты его выполнения. Можно использовать для ознакомления с признаком и специальные модели. По учебнику Л. С. Атанасяна и др. введение признаков равенства треугольников можно осуществить другим способом. Взять две каркасные модели треугольника, удовлетворяющие изучаемому признаку (равные элементы можно как-то выделить, например, окрасить одинаковым цветом), и наложить одну из них на другую (аналогичную операцию можно также выполнить с помощью компьютера). В результате этой операции треугольники совпадут, откуда и будет следовать их равенство. «Открыв» с учащимися признак равенства треугольников, следует подчеркнуть практическую значимость теоремы, которая позволяет делать вывод о равенстве двух треугольников не по равенству шести элементов треугольника (трех сторон и трех углов), а по равенству трех элементов (двух сторон и угла между ними; стороны и двух прилежащих к ней углов; трех сторон). Здесь же необходимо выяснить с учащимися и сущность понятия признака. Признак явления позволяет дать однозначный ответ на вопрос: принадлежит какой-либо объект данному явлению или нет? Формулировки признаков равенства треугольников громоздки, поэтому целесообразно поэлементное их усвоение. Например, формулировка первого признака равенства треугольников может быть разбита на следующие элементы: Если две стороны и угол между ними одного треугольника /равны соответственно двум сторонам и углу между ними другого треугольника, / то такие треугольники равны. 182
После этого можно предложить упражнения на распознавание. Важным этапом в изучении теоремы является её доказательство. В учебнике JI. С. Атанасяна и др. доказательства первых двух признаков равенства треугольников аналогичны и осуществляются посредством наложения. Рассмотренные нами упражнения на доказательство равенства фигур с по- мощью наложения способствуют усвоению этого метода, поэтому изучение первых двух признаков не вызывает затруднений у школьников. Доказательство третьего признака равенства треугольников (по трем сторонам) не аналогично доказательству первых двух признаков, оно отличается большей искусственностью. Однако и в этом случае можно привлечь учащихся к её доказательству. Их внимание следует обратить на то, что наложение треугольника ЛВС на треугольник А\В\С\ не приводит к успеху (ничего неизвестно об углах). Поэтому нужно искать новый способ доказательства. Попробуем как-то «сблизить» эти треугольники, для чего наложим треугольник Ш(' на полуплоскость с границей АхВи не содержащую точку С\ (более подробно доказательство см. в учебнике JI. С. Атанасяна и др.). Доказательства первых двух признаков равенства треугольников в учебнике А. В. Погорелова основывается на аксиомах существования треугольника, ришюго данному, откладывания отрезка и угла. Поиск доказательства первого признака может быть начат такой беседой. Как будем доказывать равенство треугольников ABC и А \ВХС\ (рис. 59)? Может быть кто-то из учащихся ответит, что нужно измерить стороны ВС И /м I И углы В, Вь С, С\. В случае равенства соответствующих сторон ВС и #1* I и равенства углов С и Сь В и Въ делаем вывод о равенстве самих тре- VIп н.никои. Но здесь необходимо заметить учащимся, что таким образом мы мишем установить равенство конкретных треугольников, да и то приближенно, и* ник практические измерения не дают точных результатов. Итак, нужно ис- мн. способ, который не основан на измерениях. 11сльзя ли ввести треугольник, равный треугольнику ABC и «удобнее» (ни-мищми'ппый по отношению к треугольнику А\В\С\. Ннсдем треугольник А\В2Сг, расположенный так, что точка С2 принадлежи чуму /1|Г|, а точка В2 лежит в одной полуплоскости с точкой Вх относи- ♦•имю прямой А\С\. Теперь задача заключается в доказательстве равенства фи мии.иикоп А\В\С\ кА\В2 С2. 1. Чк> надо знать, чтобы установить равенство треугольников AiBxC\ и У’ ! !ино ус мповить совпадение треугольников А\В\С\ и Л\В2 С2. Рис. 59 183
- Цели, содержание и структура курса математики 5-6 классов
- Значение и место учения о числе в курсе математики общеобразовательной школы
- 5 Класс
- 6 Класс
- 3. Различные пути расширения понятия числа
- 4. Методика изучения натуральных чисел
- 4. Методика изучения натуральных чисел
- 5. Основные вопросы методики изучения дробей
- 5. Основные вопросы методики изучения дробей
- 6. Методика изучения положительных и отрицательных чисел
- I. Основные типы преобразований и этапы их изучения
- III этап. Организация целостной системы преобразований (синтез).
- Буквенной части слагаемых пока остается первой.
- 1. Содержание и роль линии уравнений и неравенств в современном школьном курсе математики
- 2. Основные понятия линии уравнений и неравенств
- I * hi лаже он и возникает по ходу обсуждения процесса решения, то ответ на не-
- Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.
- * Последовательность изучения линии уравнений и неравенств
- I )гапы изучения линии уравнений, неравенств и их систем в основной школе
- 1* Курсе математики 5 класса понятие уравнения трактуется аналогично.
- Основные классы неравенств изучаются сразу вслед за изучением со- »»I мотствующих классов уравнений.
- I Ъшить уравнение - это значит найти все его корни или установить, что их нет.
- Решение квадратных уравнений и неравенств
- Il Графический метод (I способ)
- Графический метод
- Системы уравнений с двумя переменными, в которых одно или оба уравнения второй степени
- Графический метод
- Графический метод
- Графический метод
- Графический метод
- Графический метод
- Графический метод
- Il Графический метод
- Il Графический метод
- Графический метод
- Графический метод
- Графический метод
- Графический метод
- 1. Цели обучения решению текстовых задач
- 2. Пропедевтика алгебраического и геометрического методов решения текстовых задач
- 3. Этапы решения задач на составление уравнений и их реализация
- Этап {перевод задачи на геометрический язык).
- Этап (решение задачи на геометрическом языке).
- 1. Из истории введения понятия функциональной зависимости в школьный курс математики
- 2. Различные трактовки понятия функции
- 3. Методика введения понятия функции
- Этап. Мотивация введетя понятия.
- Исследовать функцию на основные свойства.
- Использовать изученные свойства функций при решении различных задач, в частности уравнений и неравенств.
- Влияние коэффициентов hub на поведение функции
- Взаимное расположение графиков линейных функции
- Б. Интеграция аналитического и графического методов в изучении квадратичной функции
- 1. Цели и задачи курса геометрии основной школы
- 2. Содержание обучения геометрии в 7-9 классах
- 3. Логические основы изложения геометрии в 7-9 классах
- Аксиомы принадлежности
- Аксиомы порядка
- Аксиомы измерения отрезков и углов
- Рекомендуемая литература
- 1. Методика изучения основных свойств простейших геометрических фигур
- 1. Учебник а. В. Погорелова: § 1 «Основные свойства простейших геометрических фигур»,
- Определения «через ближайший род и видовые отличия»
- Измерение отрезков и углов
- 3. Учебник а. Д. Александрова и др,: глава I «Начала геометрииж
- 2. Методика формирования геометрических понятий
- 3, Обучение решению задач на первых уроках геометрии
- II группа
- 1. Различные подходы к формированию понятия равенства фигур
- Что нужно знать, чтобы утверждать равенство треугольников abc и dek1
- На рисунке 55 изображено два равных треуголь- ника. Написать равенство этих треугольников, обозначив их вершины.
- Если разносторонние треугольники abc и dkm
- 11Ри иодом пример.
- I (сн тральное место в изучении равных треугольников занимают признаём риионота треугольников.
- Доказательство:
- Доказательство:
- Треугольники вас и cdb равны. Напишите все соотношения, из ко- торых следует равенство указанных треугольников.
- Напишите соотношение между элемен- тами треугольников abc и adc, из которых следовало бы их равенство.
- Какие методические подходы существуют к введению понятия ранено гва фигур в школьном курсе геометрии? Какой подход, на Ваш взгляд, милмется наиболее удачным?
- В чем особенности введения понятия равных треугольников в разных учебниках геометрии?
- Приведите примеры упражнений на усвоение понятия равных треугольников.
- I. Цели и этапы изучения взаимного расположения прямых на плоскости
- 1 Различные подходы к введению понятия параллельности прямых на плоскости.
- I. Методика изучения признаков параллельности прямых.
- 1, Цели и этапы изучения взаимного расположения прямых на плоскости
- 2. Различные подходы к введению понятия параллельности прямых на плоскости
- 4. Методические замечания к изучению перпендикулярности прямых на плоскости
- В данной плоскости через точку вне данной прямой можно провести только одну прямую, параллельную данной.
- Сумма внутренних углов треугольника равна 2d.
- 1. Различные подходы к изучению многоугольников
- 2. Методика изучения четырехугольников
- Если в четырехугольнике противоположные стороны попарно равны,
- Если в четырехугольнике диагонали пересекаются и точкой пересечении делятся пополам, то этот четырехугольник параллелограмм.
- Какие из систем неравенств задают на плоскости трапецию и почему? Покажите штриховкой множество точек плоскости, заданное системой неравенств:
- 1 H найти площадь трапеции.
- 1, Имеет1 ли ось симметрии фигура, заданная системой неравенств:
- Верно ли утверждение: а) любой правильный многоугольник является выпуклым; б) любой выпуклый многоугольник является правильным?
- Чему равны градусные меры углов: а) правильного пятиугольника; б) правильного двенадцатиугольника; в) правильного тридцатишестиугольника?
- Множество направленных отрезков плоскости.
- Множество классов направленных отрезков плоскости.
- Множество параллельных переносов плоскости.
- Начертите равнобочную трапецию: а) существуют ли векторы, определяемые её вершинами и равные по длине? б) Сколько пар сонаправленных векторов задают вершины трапеции?
- Сколько пар сонаправленных (противоположно направленных) векторов определяют вершины параллелограмма?
- Начертить параллелограмм, обозна- чить его вершины и написать все равные ме- жду собой векторы, началом и концом кото- рых являются вершины параллелограмма.
- Векторы а и ъ равны, что следует из этого?
- 3. Методика изучения действий с векторами
- II. Умножение вектора на число
- Учебник геометрии а. В. Погорелова.
- Учебник геометрии j1. С. Атанасяна и Др.
- Построить вектор, представляющий сумму
- 4. Методика обучения решению задач с помощью векторов
- 1. Дан многоугольник abcde. Представьте ad в виде суммы: а) двух; б) I рёх; в) четырех векторов, заданных вершинами этого многоугольника.
- Представьте вектор ав в виде суммы векторов ас, dc , bd .
- Вектор cDколлинеарен вектору ав и Выразите один век-
- Четырехугольник abcd - квадрат. Упростите выражение { ав - 3 вс)2,
- VI. Упражнения на нахождение длины вектора и величины угла между векторами.
- Какие действия с векторами изучаются в школьном курсе геометрии?
- Б) в треугольнике лвс известны длины всех сторон. Определить его углы.
- II кн. До н. Э.) уже фактически пользовался прямоугольными координатами.
- Простейшие задачи в координатах на плоскости
- Уравнения фигур на плоскости
- 4. Особенности применения метода координат
- 5. Методика формирования координатного метода решения задач
- Решение (координатный метод)
- Iэтап(оптимальный выбор прямоугольной системы координат). Выберем прямоугольную систему координат так, как показано на рис. 93.
- Этап (перевод задачи на координатный
- Так как м середина стороны вс, то л/
- Этап (решение задачи на координат- ном языке).
- Рекомендуемая литература
- Значение тригонометрических функций в школьном курсе математики и различные подходы к их изложению
- I ермипы «косинус», «котангенс» и др. Появились в XI—XVII вв.
- Этапы изучения линии уравнений, неравенств и их систем в
- Системы уравнений с двумя переменными, в которых
- Цели и этапы изучения взаимного расположения прямых на
- Различные подходы к введению понятии параллельности пря