Построить вектор, представляющий сумму
АВ = а + a; CD = а + а + а.
В процессе выполнения этого задания выяснить с учащимися следующее:
а) Данный и построенный векторы являются сонаправленными.
б) Длина построенного вектора | АВ | (или | CD |) равна произведению длины данного вектора а на число 2 (на число 3). Результат операции выразить и записи:
АВ =2-a; CD =3 • 5.
Рассматривая задачу построения вектора, противоположного данному нектору b , нетрудно мотивировать учащимся, что вектор -Ъ целесообразно рассматривать как произведение вектора Ь на число (- 1), т. е. -Ь = (- 1) • Ь .
После этого можно перейти к рассмотрению новой задачи.
Дан вектор с. Построить вектор MN - - с - с = - с + (~ с).
В беседе с учащимися следует выяснить, что:
а) вектор с и вектор MN - противоположно направленные векторы;
б) длина вектора MN равна произведению длины вектора с на число (-2), то in-11> | MN | = |- 2| ■ | с |. Результат операции выразить в записи: MN = - 2 с.
Полезно обратить внимание учащихся на то, что запись 2 • АВ не соот- нотствует порядку, принятому в словесной формулировке этой операции (век- юр умножается на число, в записи же числовой множитель принято ставить t*пена). Можно привести аналогичную запись в курсе алгебры: а + а ~ 2а; такая шпись оказывается удобнее, чем запись вида а * 2.
После этого можно дать определение произведения вектора а на число к и рмесмотреть равенство \ка\ = Щ \а\, являющееся следствием этого определения.
Вытекающие отсюда равенства 0*а = 0и £‘0=0 следует рассмотреть цпальпее.
Если | к | = 0, то правая часть равенства \ka\- \к\ |й| обращается в нуль, каком бы ни был вектор а : 0 • | а \ = 0. Но тогда векгор к • а имеет длину, равную ну-
ни> |к а | = 0, то есть является нулевым вектором; поэтому при j к | = 0 0 • а = 0 .
Необходимо обратить внимание учащихся на то, что в правой части послед- IK'го равенства записано не число 0, а нулевой вектор, так как произведением век- юра па любое число является вектор.
Если а = 0 , то | а | = 10 | = 0.
Поэтому правая часть равенства \ ка \ = ]&| \а\ и в этом случае обращается в Iiv и»*, каково бы ни было число к: | к | • 0 = 0.
Таким образом, к - а ив этом случае имеет длину, равную нулю, то есть
ииииется нулевым вектором. Поэтому при а - 0 к ‘ 0=0.
11ри изучении сложения векторов, вычитания векторов и умножения век- юр:! па число следует выполнять упражнения не только на нахождение суммы, рмшости векторов, произведения вектора на число, но и на представление век-
227
- Цели, содержание и структура курса математики 5-6 классов
- Значение и место учения о числе в курсе математики общеобразовательной школы
- 5 Класс
- 6 Класс
- 3. Различные пути расширения понятия числа
- 4. Методика изучения натуральных чисел
- 4. Методика изучения натуральных чисел
- 5. Основные вопросы методики изучения дробей
- 5. Основные вопросы методики изучения дробей
- 6. Методика изучения положительных и отрицательных чисел
- I. Основные типы преобразований и этапы их изучения
- III этап. Организация целостной системы преобразований (синтез).
- Буквенной части слагаемых пока остается первой.
- 1. Содержание и роль линии уравнений и неравенств в современном школьном курсе математики
- 2. Основные понятия линии уравнений и неравенств
- I * hi лаже он и возникает по ходу обсуждения процесса решения, то ответ на не-
- Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.
- * Последовательность изучения линии уравнений и неравенств
- I )гапы изучения линии уравнений, неравенств и их систем в основной школе
- 1* Курсе математики 5 класса понятие уравнения трактуется аналогично.
- Основные классы неравенств изучаются сразу вслед за изучением со- »»I мотствующих классов уравнений.
- I Ъшить уравнение - это значит найти все его корни или установить, что их нет.
- Решение квадратных уравнений и неравенств
- Il Графический метод (I способ)
- Графический метод
- Системы уравнений с двумя переменными, в которых одно или оба уравнения второй степени
- Графический метод
- Графический метод
- Графический метод
- Графический метод
- Графический метод
- Графический метод
- Il Графический метод
- Il Графический метод
- Графический метод
- Графический метод
- Графический метод
- Графический метод
- 1. Цели обучения решению текстовых задач
- 2. Пропедевтика алгебраического и геометрического методов решения текстовых задач
- 3. Этапы решения задач на составление уравнений и их реализация
- Этап {перевод задачи на геометрический язык).
- Этап (решение задачи на геометрическом языке).
- 1. Из истории введения понятия функциональной зависимости в школьный курс математики
- 2. Различные трактовки понятия функции
- 3. Методика введения понятия функции
- Этап. Мотивация введетя понятия.
- Исследовать функцию на основные свойства.
- Использовать изученные свойства функций при решении различных задач, в частности уравнений и неравенств.
- Влияние коэффициентов hub на поведение функции
- Взаимное расположение графиков линейных функции
- Б. Интеграция аналитического и графического методов в изучении квадратичной функции
- 1. Цели и задачи курса геометрии основной школы
- 2. Содержание обучения геометрии в 7-9 классах
- 3. Логические основы изложения геометрии в 7-9 классах
- Аксиомы принадлежности
- Аксиомы порядка
- Аксиомы измерения отрезков и углов
- Рекомендуемая литература
- 1. Методика изучения основных свойств простейших геометрических фигур
- 1. Учебник а. В. Погорелова: § 1 «Основные свойства простейших геометрических фигур»,
- Определения «через ближайший род и видовые отличия»
- Измерение отрезков и углов
- 3. Учебник а. Д. Александрова и др,: глава I «Начала геометрииж
- 2. Методика формирования геометрических понятий
- 3, Обучение решению задач на первых уроках геометрии
- II группа
- 1. Различные подходы к формированию понятия равенства фигур
- Что нужно знать, чтобы утверждать равенство треугольников abc и dek1
- На рисунке 55 изображено два равных треуголь- ника. Написать равенство этих треугольников, обозначив их вершины.
- Если разносторонние треугольники abc и dkm
- 11Ри иодом пример.
- I (сн тральное место в изучении равных треугольников занимают признаём риионота треугольников.
- Доказательство:
- Доказательство:
- Треугольники вас и cdb равны. Напишите все соотношения, из ко- торых следует равенство указанных треугольников.
- Напишите соотношение между элемен- тами треугольников abc и adc, из которых следовало бы их равенство.
- Какие методические подходы существуют к введению понятия ранено гва фигур в школьном курсе геометрии? Какой подход, на Ваш взгляд, милмется наиболее удачным?
- В чем особенности введения понятия равных треугольников в разных учебниках геометрии?
- Приведите примеры упражнений на усвоение понятия равных треугольников.
- I. Цели и этапы изучения взаимного расположения прямых на плоскости
- 1 Различные подходы к введению понятия параллельности прямых на плоскости.
- I. Методика изучения признаков параллельности прямых.
- 1, Цели и этапы изучения взаимного расположения прямых на плоскости
- 2. Различные подходы к введению понятия параллельности прямых на плоскости
- 4. Методические замечания к изучению перпендикулярности прямых на плоскости
- В данной плоскости через точку вне данной прямой можно провести только одну прямую, параллельную данной.
- Сумма внутренних углов треугольника равна 2d.
- 1. Различные подходы к изучению многоугольников
- 2. Методика изучения четырехугольников
- Если в четырехугольнике противоположные стороны попарно равны,
- Если в четырехугольнике диагонали пересекаются и точкой пересечении делятся пополам, то этот четырехугольник параллелограмм.
- Какие из систем неравенств задают на плоскости трапецию и почему? Покажите штриховкой множество точек плоскости, заданное системой неравенств:
- 1 H найти площадь трапеции.
- 1, Имеет1 ли ось симметрии фигура, заданная системой неравенств:
- Верно ли утверждение: а) любой правильный многоугольник является выпуклым; б) любой выпуклый многоугольник является правильным?
- Чему равны градусные меры углов: а) правильного пятиугольника; б) правильного двенадцатиугольника; в) правильного тридцатишестиугольника?
- Множество направленных отрезков плоскости.
- Множество классов направленных отрезков плоскости.
- Множество параллельных переносов плоскости.
- Начертите равнобочную трапецию: а) существуют ли векторы, определяемые её вершинами и равные по длине? б) Сколько пар сонаправленных векторов задают вершины трапеции?
- Сколько пар сонаправленных (противоположно направленных) векторов определяют вершины параллелограмма?
- Начертить параллелограмм, обозна- чить его вершины и написать все равные ме- жду собой векторы, началом и концом кото- рых являются вершины параллелограмма.
- Векторы а и ъ равны, что следует из этого?
- 3. Методика изучения действий с векторами
- II. Умножение вектора на число
- Учебник геометрии а. В. Погорелова.
- Учебник геометрии j1. С. Атанасяна и Др.
- Построить вектор, представляющий сумму
- 4. Методика обучения решению задач с помощью векторов
- 1. Дан многоугольник abcde. Представьте ad в виде суммы: а) двух; б) I рёх; в) четырех векторов, заданных вершинами этого многоугольника.
- Представьте вектор ав в виде суммы векторов ас, dc , bd .
- Вектор cDколлинеарен вектору ав и Выразите один век-
- Четырехугольник abcd - квадрат. Упростите выражение { ав - 3 вс)2,
- VI. Упражнения на нахождение длины вектора и величины угла между векторами.
- Какие действия с векторами изучаются в школьном курсе геометрии?
- Б) в треугольнике лвс известны длины всех сторон. Определить его углы.
- II кн. До н. Э.) уже фактически пользовался прямоугольными координатами.
- Простейшие задачи в координатах на плоскости
- Уравнения фигур на плоскости
- 4. Особенности применения метода координат
- 5. Методика формирования координатного метода решения задач
- Решение (координатный метод)
- Iэтап(оптимальный выбор прямоугольной системы координат). Выберем прямоугольную систему координат так, как показано на рис. 93.
- Этап (перевод задачи на координатный
- Так как м середина стороны вс, то л/
- Этап (решение задачи на координат- ном языке).
- Рекомендуемая литература
- Значение тригонометрических функций в школьном курсе математики и различные подходы к их изложению
- I ермипы «косинус», «котангенс» и др. Появились в XI—XVII вв.
- Этапы изучения линии уравнений, неравенств и их систем в
- Системы уравнений с двумя переменными, в которых
- Цели и этапы изучения взаимного расположения прямых на
- Различные подходы к введению понятии параллельности пря