§ 10. Трансфинитные числа
Порядковые числа бесконечной мощности называются трансфинитными числами. Все числа из с,с+ 1,...с+ п - есть трансфинитные числа.
Порядковые типы cf,p,h,1 не есть трансфинитные числа, ибо это типы не вполне упорядоченных множеств.Множество N0 называется первым числовым классом. Ему соответствуют конечные мощности. Вторым числовым классом K0 называется множество всех порядковых чисел, которые есть типами счетных вполне упорядоченных множеств. Числа класса K0 уже трансфинитны. Класс K0 уже несчетен, K0 обозначается IC1. Вообще, алефами называются мощности вполне упорядоченных множеств. Каждые два алефа сравнимы. Таким образом, мощность первого числового класса N0 равна IC0, второго класса K0 - IC1. В класс K0 входят числа уже w,w + 1,...,w + п,..,ю + ю = ю-2, ю- 2 +1 и т. д.
Продолжая процесс, определим все числа вида Ю - n + m. Их счетное множество.
Первое, следующее за ними число обозначается w2 .
Далее идут
w2 + 1,...,w2 + n,...,w2 + w,...,w2 + Ю+ n,...,w2 + +w- 2,...,w2 + w- 2 + n и т. д.
Первое, следующее за ними число, обозначается w3 . Продолжение этого процесса приводит к wk - n + wk-1 - n1 +... + nk. За ними идет число, обозначаемое ww . Процесс продолжается и далее. Число, следующее за числами вида ww и, обозначаем через e. Далее идут e +1 и т. д. И все же для всех чисел из K0 мы не можем ввести символы, т. к. обозначениями мы охватим только счетное множество чисел, а класс K0 несчетен.
Что касается алефов, то наибольшего алефа нет, каждый алеф имеет непосредственно следующий алеф. Каждый алеф есть ICa, где a - порядковое число.
Yandex.RTB R-A-252273-3- Теория функций действительной переменной
- Теория функций действительной переменной
- П 2. Разделы тфвп
- 1. Литература для математиков-теоретиков научного направления. Содержит больше материала, чем наша программа предусматривает:
- 2. Литература для математиков-теоретиков педагогического направления. Содержит практически весь нужный материал и другие вопросы:
- 3. Сборники задач:
- Раздел 1. Дескриптивная теория функций.
- Глава 1. Элементы общей теории множеств.
- § 1. Множества, подмножества
- § 2. Действия над множествами
- III. Разность множеств
- IV. Дополнение к множеству
- § 3. Мощность множества
- § 4. Сравнение мощностей
- § 5. Счетные множества
- 1) Из каждого бесконечного множества можно выделить счетное подмножество, причем так, что останется бесконечное множество. Доказательство
- 4) Объединение конечного числа счетных множеств счетно. Доказательство
- 5) Объединение счетного дизъюнктного семейства конечных множеств счетно. Доказательство
- § 6. Мощность континуума
- 8O Если элементы множества определяются конечным или счетным количеством индексов, каждый из которых независимо от других принимает c значений, то это множество имеет мощность c. Следствие
- 9O Объединение континуального дизъюнктного семейства множеств мощности c есть множество мощности c . Доказательство
- § 7. Функциональная мощность
- § 8. Упорядоченные множества
- § 9. Вполне упорядоченные множества Определение
- § 10. Трансфинитные числа
- § 11. Континуум - гипотеза
- Глава 2. Множества в пространстве Rn
- §1. Метрические пространства
- §2. Специальные точки множеств
- §3. Открытые множества
- 40. Ш (x0, r) есть открытое множество.
- §4. Замкнутые множества
- 0 С f с Rn. Vx0 е g. Точка X не может быть точкой
- 0 С g с Rn . Пусть x0 - любая точка прикосновения f,
- 30 . Пересечение произвольного непустого и объединение конечного семейств замкнутых множеств замкнуты.
- 1. Существует бесконечное множество номеров /
- X е (X j y)' имеем (X j y)' с X' j y. /
- §5. Структура откры1ты1х и замкнутыых множеств на прямой
- §6. Множества на плоскости, в пространстве и в Rn
- Глава 3. Функции вещественных переменных
- §1. Непрерывность функций
- §2. Непрерывные функции на замкнутых множествах
- §3. Точки разрыва
- 2. Если не существует хотя бы одного из односторонних пределов, то это точка разрыва 2-го рода.
- §4. Последовательности функций
- §5. Классификация Бэра
- §6. Функции ограниченной вариации
- 20. Функция класса Липшица (r. Lipschitz) есть фов. ► "(t),
- 60. Разность фов есть фов. Аналогично 50.
- 70. Произведение фов есть фов.
- 2. Достаточность
- 1. Необходимость.
- Раздел 2. Метрическая теория функций
- Глава 1. Измеримые множества § 1. Движения в пространстве Rn
- § 2. Проблемы построения меры
- § 3. Мера Жордана
- 2. Канторово множество f0.
- 4°. Конечная аддитивность меры Жордана. Если
- § 4. Построение меры Лебега
- § 5. Мера открытых множеств
- § 6. Мера замкнутых множеств
- § 7. Внутренняя и внешняя меры
- § 8. Измеримость множеств
- § 9. Класс измеримых множеств
- § 10. Сходимость почти всюду
- § 11. Мера Лебега в пространстве Rn
- § 12. Связь мер Жордана и Лебега
- § 13. Мера абстрактных множеств
- 5. Найти меру Лебега множества
- § 1. Измеримость функции
- 60. Если f измеримы на X, то измеримыми будут такие
- § 2. Последовательности измеримых функций Теорема 1
- § 3. Структура измеримых функций
- 2. F( X) не ограничена. По теореме 1 построим
- Глава 3. Интеграл
- § 1. Интеграл Римана
- 1. Необходимость
- 2. Достаточность
- 1. Необходимость
- § 2. Интеграл Стилтьеса
- § 3. Интеграл Лебега
- § 4. Сравнение интегралов Римана и Лебега
- § 6. Обобщенный интеграл Лебега от функций произвольных знаков
- 10. Суммируемая функция почти всюду конечна.
- 20. На множестве меры нуль суммируема любая функция и интеграл равен нулю.
- 3 Lim Sr(t) - c(b- a) - (r)Jcdx.
- 5. Вычислить (l)j f (X)dx, f (X)
- 8. Суммируема ли на (-1,8), f (X) - dx
- (0,1)Глава 4. Пространства суммируемых функций
- § 1. Линейные пространства
- § 2. Нормированные линейные пространства
- III. Пространства последовательностей 1. Ограниченных последовательностей, m или .
- § 3. Эвклидовы и унитарные пространства
- X становится линейным нормированным пространством. Примеры
- § 4. Гильбертовы пространства
- § 5. Пространство суммируемых функций l (х)
- If (X )e l ( х), le r, то l ( х) есть вещественное линейное
- § 6. Пространство функций с суммируемым квадратом
- § 7. Пространства функций, суммируемых с данной
- X X у Имеем требуемое неравенство. Теорема доказана.
- § 8. Пространства последовательностей 1 p
- § 9. Пространства l2( X) и 12
- 1 В пространство
- Теория функций действительной переменной конспект лекций
- 4 Достаточность