Рациональные дроби
Определение 3. Дробно-рациональной функцией (или рациональной дробью) называется функция, равная отношению двух многочленов, т.е. всякая дробь вида
Определение 4. Рациональная дробь называется правильной, если степень числителя меньше степени знаменателя, т.е. n<m; в противном случае (если ) рациональная дробь называется неправильной.
Всякую неправильную рациональную дробь можно представить в виде суммы многочлена (целой части) и правильной рациональной дроби (это представление достигается путем деления числителя на знаменатель по правилу деления многочленов):
где – многочлен-частное (целая часть) дроби ; – остаток (многочлен степени n<m).
Так как интегрирование многочлена не представляет затруднений, то интегрирование рациональных дробей сводится к интегрированию правильных рациональных дробей.
Определение 5. Простейшей дробью называется правильная рациональная дробь одного из следующих четырех типов:
Здесь A, a, p, q, M, N – действительные числа, а трехчлен не имеет действительных корней, т. е.
Теорема 3. Всякую правильную рациональную дробь , где , можно единственным образом разложить на сумму простейших дробей:
(4)
где – некоторые действительные числа.
Для нахождения коэффициентов разложения (4), чаще всего применяют методы неопределенных коэффициентов и частных значений.
Метод неопределенных коэффициентов
Суть метода такова: в правой части равенства (4) приведем дроби к общему знаменателю и приравняем многочлен, получившийся в числителе, многочлену .
Для тождественного равенства двух многочленов необходимо и достаточно, чтобы коэффициенты при одинаковых степенях x этих многочленов были равны. Учитывая это приравниваем коэффициенты при одинаковых степенях x в левой и правой частях полученного тождества. Имеем систему m линейных уравнений для нахождения m неизвестных коэффициентов .
Метод частных значений
При нахождении неопределенных коэффициентов вместо того, чтобы сравнивать коэффициенты при одинаковых степенях x, можно придать переменной x несколько частных значений (по числу неопределенных коэффициентов) и получить таким образом систему уравнений относительно неопределенных коэффициентов. Особенно выгодно применять этот метод в случае, когда корни знаменателя рациональной дроби просты и действительны. Тогда оказывается удобным последовательно полагать x равным каждому из корней знаменателя.
Замечание. Иногда для нахождения неопределенных коэффициентов удобно применять комбинацию указанных выше методов, т. е. придавать x ряд частных значений и приравнивать коэффициенты при некоторых степенях x.
- GfВведение в математический анализ План
- Множества
- Операции над множествами
- Понятие функции, ее области определения и множества значений. Способы задания функции
- Основные свойства функции
- Понятие обратной функции
- Понятие сложной функции
- Применение функций в экономике
- Числовые последовательности
- Предел последовательности
- Число е, применение в экономике
- Предел функции
- Замечательные пределы
- Бесконечно малые, бесконечно большие функции
- Классификация бесконечно малых
- Односторонние пределы функции
- Непрерывность функции, классификация точек разрыва
- Основы дифференциального исчисления функции одной переменной План
- Определение производной
- Геометрический и физический смысл производной
- Связь между непрерывностью и дифференцируемостью функции
- Правила дифференцирования функций
- Дифференцирование сложной, обратной функций
- Производная неявной и параметрически заданной функций
- Определение и геометрический смысл дифференциала
- Производные высших порядков явно заданной функции
- Производные высших порядков неявно заданной функции
- Производные высших порядков параметрически заданной функции
- Дифференциалы высших порядков
- Основные теоремы дифференциального исчисления
- Раскрытие неопределенностей с помощью правила Лопиталя
- Формула Тейлора
- Разложение по формуле Маклорена некоторых элементарных функций
- Исследование функций с помощью производных Условия возрастания и убывания функции
- Понятие экстремума
- Выпуклость графика функции. Точки перегиба
- Асимптоты графика функции
- Применение производных в экономике
- Функция нескольких переменных План
- Определение функции нескольких переменных. Область определения
- Линии уровня
- Предел функции нескольких переменных
- Непрерывность функции нескольких переменных
- Частные производные первого и высших порядков
- Полный дифференциал и его применение при приближенных вычислениях
- Дифференциалы высших порядков
- Производная по направлению, градиент функции
- Экстремум функции нескольких переменных
- Наибольшее и наименьшее значения функции нескольких переменных в замкнутой области
- Условный экстремум. Метод множителей Лагранжа
- Метод наименьших квадратов
- Основы интегрального исчисления План
- Первообразная функции и неопределенный интеграл
- Основные свойства неопределенного интеграла
- Основные методы интегрирования
- Рациональные дроби
- Интегрирование простейших рациональных дробей
- Интегрирование рациональных дробей
- Интегрирование тригонометрический функций
- Интегрирование некоторых иррациональных функций
- Интегралы, не выражающиеся через элементарные функции
- Определенный интеграл
- Основные свойства определенного интеграла
- Определенный интеграл с переменным верхним пределом
- Формула Ньютона – Лейбница
- Основные методы вычисления определенного интеграла
- Геометрические приложения определенного интеграла
- Некоторые приложения определенного интеграла в экономике
- Несобственные интегралы
- Дифференциальные уравнения План
- Общие сведения о дифференциальных уравнениях
- Дифференциальные уравнения первого порядка (общие понятия)
- Уравнения с разделяющимися переменными
- Однородные дифференциальные уравнения
- Линейные уравнения. Уравнения я. Бернулли
- Дифференциальные уравнения второго порядка (основные понятия)
- Уравнения, допускающие понижение порядка
- Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
- Линейные однородные уравнения второго порядка
- Неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами
- Применение дифференциальных уравнений в задачах экономики
- Числовые и функциональные ряды План
- Основные понятия. Сходимость ряда
- Необходимый признак сходимости
- Достаточные признаки сходимости рядов с положительными членами
- Знакочередующиеся ряды. Признак Лейбница
- Знакопеременные ряды. Общий достаточный признак сходимости знакопеременных рядов
- Функциональные ряды. Степенные ряды. Сходимость степенных рядов
- Ряды Тейлора и Маклорена