Линейные уравнения. Уравнения я. Бернулли
Определение 9. Линейным дифференциальным уравнением первого порядка называется уравнение, линейное относительно неизвестной функции и ее производной. Оно имеет вид
(5)
где , – заданные непрерывные функции от x , в частности – постоянные.
Если , то уравнение (5) называется линейным однородным уравнением; если же функция не равна тождественно нулю, то уравнение (5) называется линейным неоднородным уравнением.
Метод вариации произвольной постоянной (метод Лагранжа). Рассмотрим однородное уравнение
Его общее решение имеет вид . Решение исходного уравнения (5) ищется в виде:
(6)
Подставляя (6) в (5), для определения получим уравнение . Откуда
(7)
где С – произвольная постоянная. Подставляя из (7) в (6), находим общее решение уравнения (5):
(8)
Метод Бернулли. Решение уравнения (5) ищется в виде , где и – неизвестные функции от x, причем одна из них произвольна, но не равна нулю. Действительно, любую функцию можно представить в виде
Тогда . Подставляя y и в (5), имеем
или
Подберем так, чтобы выражение в скобках было равно нулю, т. е. решим уравнение . В виду свободы выбора функции , среди множества решений этого уравнения выберем решение . Тогда находим из уравнения
т. е. где С – произвольная постоянная. Перемножая и , находим решение (8).
Определение 10. Уравнением Бернулли называется уравнение вида
(9)
При n=0 получаем линейное уравнение, при n=1 – уравнение с разделяющимися переменными.
Уравнение Бернулли можно привести к линейному уравнению заменой Однако на практике решения уравнения Бернулли удобней искать в виде , не приводя его к линейному уравнению.
Yandex.RTB R-A-252273-3
- GfВведение в математический анализ План
- Множества
- Операции над множествами
- Понятие функции, ее области определения и множества значений. Способы задания функции
- Основные свойства функции
- Понятие обратной функции
- Понятие сложной функции
- Применение функций в экономике
- Числовые последовательности
- Предел последовательности
- Число е, применение в экономике
- Предел функции
- Замечательные пределы
- Бесконечно малые, бесконечно большие функции
- Классификация бесконечно малых
- Односторонние пределы функции
- Непрерывность функции, классификация точек разрыва
- Основы дифференциального исчисления функции одной переменной План
- Определение производной
- Геометрический и физический смысл производной
- Связь между непрерывностью и дифференцируемостью функции
- Правила дифференцирования функций
- Дифференцирование сложной, обратной функций
- Производная неявной и параметрически заданной функций
- Определение и геометрический смысл дифференциала
- Производные высших порядков явно заданной функции
- Производные высших порядков неявно заданной функции
- Производные высших порядков параметрически заданной функции
- Дифференциалы высших порядков
- Основные теоремы дифференциального исчисления
- Раскрытие неопределенностей с помощью правила Лопиталя
- Формула Тейлора
- Разложение по формуле Маклорена некоторых элементарных функций
- Исследование функций с помощью производных Условия возрастания и убывания функции
- Понятие экстремума
- Выпуклость графика функции. Точки перегиба
- Асимптоты графика функции
- Применение производных в экономике
- Функция нескольких переменных План
- Определение функции нескольких переменных. Область определения
- Линии уровня
- Предел функции нескольких переменных
- Непрерывность функции нескольких переменных
- Частные производные первого и высших порядков
- Полный дифференциал и его применение при приближенных вычислениях
- Дифференциалы высших порядков
- Производная по направлению, градиент функции
- Экстремум функции нескольких переменных
- Наибольшее и наименьшее значения функции нескольких переменных в замкнутой области
- Условный экстремум. Метод множителей Лагранжа
- Метод наименьших квадратов
- Основы интегрального исчисления План
- Первообразная функции и неопределенный интеграл
- Основные свойства неопределенного интеграла
- Основные методы интегрирования
- Рациональные дроби
- Интегрирование простейших рациональных дробей
- Интегрирование рациональных дробей
- Интегрирование тригонометрический функций
- Интегрирование некоторых иррациональных функций
- Интегралы, не выражающиеся через элементарные функции
- Определенный интеграл
- Основные свойства определенного интеграла
- Определенный интеграл с переменным верхним пределом
- Формула Ньютона – Лейбница
- Основные методы вычисления определенного интеграла
- Геометрические приложения определенного интеграла
- Некоторые приложения определенного интеграла в экономике
- Несобственные интегралы
- Дифференциальные уравнения План
- Общие сведения о дифференциальных уравнениях
- Дифференциальные уравнения первого порядка (общие понятия)
- Уравнения с разделяющимися переменными
- Однородные дифференциальные уравнения
- Линейные уравнения. Уравнения я. Бернулли
- Дифференциальные уравнения второго порядка (основные понятия)
- Уравнения, допускающие понижение порядка
- Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
- Линейные однородные уравнения второго порядка
- Неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами
- Применение дифференциальных уравнений в задачах экономики
- Числовые и функциональные ряды План
- Основные понятия. Сходимость ряда
- Необходимый признак сходимости
- Достаточные признаки сходимости рядов с положительными членами
- Знакочередующиеся ряды. Признак Лейбница
- Знакопеременные ряды. Общий достаточный признак сходимости знакопеременных рядов
- Функциональные ряды. Степенные ряды. Сходимость степенных рядов
- Ряды Тейлора и Маклорена