Первообразная функции и неопределенный интеграл
В интегральном исчислении основной задачей является нахождение функции y= f(x) по ее известной производной .
Определение 1. Функция F(x) называется первообразной функции f(x) на интервале (a, b), если для любого выполняется равенство: или .
Теорема 1. Любая непрерывная на отрезке [a, b] функция f(x) имеет на этом отрезке первообразную F(x).
В дальнейшем будем рассматривать непрерывные на отрезке функции.
Теорема 2. Если функция F(x) является первообразной функции f(x) на интервале (a, b), то множество всех первообразных задается формулой F(x)+С, где С – постоянное число.
Доказательство.
Функция F(x)+С является первообразной функции f(x), так как .
Пусть Ф(x) – другая, отличная от F(x) первообразной функции f(x), т. е. . Тогда имеем
а это означает, что
,
где С – постоянное число. Следовательно,
Определение 2. Множество всех первообразных функций F(x)+С для функции f(x) называется неопределенным интегралом от функции f(x) и обозначается символом .
Таким образом, по определению
(1)
В формуле (1) f(x) называется подынтегральной функцией, f(x)dx – подынтегральным выражением, x – переменной интегрирования, знаком неопределенного интеграла.
Операция нахождения неопределенного интеграла от функции называется интегрированием этой функции.
Геометрически неопределенный интеграл представляет собой семейство кривых (каждому числовому значению С соответствует определенная кривая семейства). График каждой первообразной (кривой) называется интегральной кривой. Они не пересекаются между собой и не касаются друг друга. Через каждую точку плоскости проходит только одна интегральная кривая. Все интегральные кривые получаются одна из другой параллельным переносом вдоль оси Оy.
Yandex.RTB R-A-252273-3
- GfВведение в математический анализ План
- Множества
- Операции над множествами
- Понятие функции, ее области определения и множества значений. Способы задания функции
- Основные свойства функции
- Понятие обратной функции
- Понятие сложной функции
- Применение функций в экономике
- Числовые последовательности
- Предел последовательности
- Число е, применение в экономике
- Предел функции
- Замечательные пределы
- Бесконечно малые, бесконечно большие функции
- Классификация бесконечно малых
- Односторонние пределы функции
- Непрерывность функции, классификация точек разрыва
- Основы дифференциального исчисления функции одной переменной План
- Определение производной
- Геометрический и физический смысл производной
- Связь между непрерывностью и дифференцируемостью функции
- Правила дифференцирования функций
- Дифференцирование сложной, обратной функций
- Производная неявной и параметрически заданной функций
- Определение и геометрический смысл дифференциала
- Производные высших порядков явно заданной функции
- Производные высших порядков неявно заданной функции
- Производные высших порядков параметрически заданной функции
- Дифференциалы высших порядков
- Основные теоремы дифференциального исчисления
- Раскрытие неопределенностей с помощью правила Лопиталя
- Формула Тейлора
- Разложение по формуле Маклорена некоторых элементарных функций
- Исследование функций с помощью производных Условия возрастания и убывания функции
- Понятие экстремума
- Выпуклость графика функции. Точки перегиба
- Асимптоты графика функции
- Применение производных в экономике
- Функция нескольких переменных План
- Определение функции нескольких переменных. Область определения
- Линии уровня
- Предел функции нескольких переменных
- Непрерывность функции нескольких переменных
- Частные производные первого и высших порядков
- Полный дифференциал и его применение при приближенных вычислениях
- Дифференциалы высших порядков
- Производная по направлению, градиент функции
- Экстремум функции нескольких переменных
- Наибольшее и наименьшее значения функции нескольких переменных в замкнутой области
- Условный экстремум. Метод множителей Лагранжа
- Метод наименьших квадратов
- Основы интегрального исчисления План
- Первообразная функции и неопределенный интеграл
- Основные свойства неопределенного интеграла
- Основные методы интегрирования
- Рациональные дроби
- Интегрирование простейших рациональных дробей
- Интегрирование рациональных дробей
- Интегрирование тригонометрический функций
- Интегрирование некоторых иррациональных функций
- Интегралы, не выражающиеся через элементарные функции
- Определенный интеграл
- Основные свойства определенного интеграла
- Определенный интеграл с переменным верхним пределом
- Формула Ньютона – Лейбница
- Основные методы вычисления определенного интеграла
- Геометрические приложения определенного интеграла
- Некоторые приложения определенного интеграла в экономике
- Несобственные интегралы
- Дифференциальные уравнения План
- Общие сведения о дифференциальных уравнениях
- Дифференциальные уравнения первого порядка (общие понятия)
- Уравнения с разделяющимися переменными
- Однородные дифференциальные уравнения
- Линейные уравнения. Уравнения я. Бернулли
- Дифференциальные уравнения второго порядка (основные понятия)
- Уравнения, допускающие понижение порядка
- Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
- Линейные однородные уравнения второго порядка
- Неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами
- Применение дифференциальных уравнений в задачах экономики
- Числовые и функциональные ряды План
- Основные понятия. Сходимость ряда
- Необходимый признак сходимости
- Достаточные признаки сходимости рядов с положительными членами
- Знакочередующиеся ряды. Признак Лейбница
- Знакопеременные ряды. Общий достаточный признак сходимости знакопеременных рядов
- Функциональные ряды. Степенные ряды. Сходимость степенных рядов
- Ряды Тейлора и Маклорена