Уравнения, допускающие понижение порядка
Существует три вида уравнения , которые при помощи замены переменной (искомой функции) сводятся к уравнениям первого порядка.
1. Уравнения вида
(12)
Введем новую функцию p(x) путем замены . Тогда и получаем уравнение первого порядка . Решив его, т. е. найдя функцию p=p(x), решим затем уравнение Получим общее решение уравнения (12).
Замечание. На практике при решении уравнения (12) будем поступать иначе. Порядок в уравнении будем понижать непосредственно путем последовательного интегрирования данного уравнения.
2. Уравнения вида
(13)
т. е. уравнение, не содержащее явно искомой функции y.
Обозначим , где – новая неизвестная функция. Тогда и уравнение (13) принимает вид
.
Пусть – общее решение полученного дифференциального уравнения первого порядка. Сделав обратную замену , получаем . Для отыскания y достаточно проинтегрировать последнее уравнение. Общее решение уравнения (13) будет иметь вид
.
Частным случаем уравнения (13) является уравнение
не содержащее также и независимую переменную x. Оно интегрируется тем же способом:
. Получается уравнение с разделяющимися переменными.
3. Уравнения вида
(14)
т. е. уравнение, не содержащее независимой переменной x.
Для понижения порядка уравнения введем новую функцию , зависящую от переменной y, полагая . Дифференцируем это равенство по x, учитывая, что :
,
т. е. . После замены уравнение (14) запишется в виде:
Пусть – общее решение полученного дифференциального уравнения первого порядка. Сделав обратную замену , получаем – дифференциальное уравнение с разделяющимися переменными. Интегрируя его, найдем общий интеграл данного дифференциального уравнения
Частным случаем уравнения (14) является уравнение
.
Такое уравнение решается при помощи аналогичной подстановки .
Yandex.RTB R-A-252273-3
- GfВведение в математический анализ План
- Множества
- Операции над множествами
- Понятие функции, ее области определения и множества значений. Способы задания функции
- Основные свойства функции
- Понятие обратной функции
- Понятие сложной функции
- Применение функций в экономике
- Числовые последовательности
- Предел последовательности
- Число е, применение в экономике
- Предел функции
- Замечательные пределы
- Бесконечно малые, бесконечно большие функции
- Классификация бесконечно малых
- Односторонние пределы функции
- Непрерывность функции, классификация точек разрыва
- Основы дифференциального исчисления функции одной переменной План
- Определение производной
- Геометрический и физический смысл производной
- Связь между непрерывностью и дифференцируемостью функции
- Правила дифференцирования функций
- Дифференцирование сложной, обратной функций
- Производная неявной и параметрически заданной функций
- Определение и геометрический смысл дифференциала
- Производные высших порядков явно заданной функции
- Производные высших порядков неявно заданной функции
- Производные высших порядков параметрически заданной функции
- Дифференциалы высших порядков
- Основные теоремы дифференциального исчисления
- Раскрытие неопределенностей с помощью правила Лопиталя
- Формула Тейлора
- Разложение по формуле Маклорена некоторых элементарных функций
- Исследование функций с помощью производных Условия возрастания и убывания функции
- Понятие экстремума
- Выпуклость графика функции. Точки перегиба
- Асимптоты графика функции
- Применение производных в экономике
- Функция нескольких переменных План
- Определение функции нескольких переменных. Область определения
- Линии уровня
- Предел функции нескольких переменных
- Непрерывность функции нескольких переменных
- Частные производные первого и высших порядков
- Полный дифференциал и его применение при приближенных вычислениях
- Дифференциалы высших порядков
- Производная по направлению, градиент функции
- Экстремум функции нескольких переменных
- Наибольшее и наименьшее значения функции нескольких переменных в замкнутой области
- Условный экстремум. Метод множителей Лагранжа
- Метод наименьших квадратов
- Основы интегрального исчисления План
- Первообразная функции и неопределенный интеграл
- Основные свойства неопределенного интеграла
- Основные методы интегрирования
- Рациональные дроби
- Интегрирование простейших рациональных дробей
- Интегрирование рациональных дробей
- Интегрирование тригонометрический функций
- Интегрирование некоторых иррациональных функций
- Интегралы, не выражающиеся через элементарные функции
- Определенный интеграл
- Основные свойства определенного интеграла
- Определенный интеграл с переменным верхним пределом
- Формула Ньютона – Лейбница
- Основные методы вычисления определенного интеграла
- Геометрические приложения определенного интеграла
- Некоторые приложения определенного интеграла в экономике
- Несобственные интегралы
- Дифференциальные уравнения План
- Общие сведения о дифференциальных уравнениях
- Дифференциальные уравнения первого порядка (общие понятия)
- Уравнения с разделяющимися переменными
- Однородные дифференциальные уравнения
- Линейные уравнения. Уравнения я. Бернулли
- Дифференциальные уравнения второго порядка (основные понятия)
- Уравнения, допускающие понижение порядка
- Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
- Линейные однородные уравнения второго порядка
- Неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами
- Применение дифференциальных уравнений в задачах экономики
- Числовые и функциональные ряды План
- Основные понятия. Сходимость ряда
- Необходимый признак сходимости
- Достаточные признаки сходимости рядов с положительными членами
- Знакочередующиеся ряды. Признак Лейбница
- Знакопеременные ряды. Общий достаточный признак сходимости знакопеременных рядов
- Функциональные ряды. Степенные ряды. Сходимость степенных рядов
- Ряды Тейлора и Маклорена