Некоторые приложения определенного интеграла в экономике
Рассмотрим экономические задачи, в которых придется воспользоваться умением брать интегралы.
Дневная выработка.
Найти дневную выработку P за рабочий день продолжительностью 8 часов, если производительность труда в течение дня меняется по эмпирической формуле
где t – время в часах, – размерность производительности (объем продукции в час), – размерность времени (ч). Эта формула вполне отражает реальный процесс работы: производительность сначала растет, достигая максимума в середине рабочего дня при t=4 ч, а затем падает.
Решение. Полагая, что производительность меняется в течение дня непрерывно, т. е. p является непрерывной функцией аргумента t на отрезке [0, 8], дневную выработку P можно выразить определенным интегралом:
,
где – множитель, имеющий размерность единицы продукции. Если бы в течении всего дня работа велась ритмично и с максимальной производительностью то дневная выработка составила бы или примерно на 21% больше.
Выпуска оборудования при постоянном темпе роста.
Производство оборудования некоторого вида характеризуется темпом роста его выпуска, где средний темп роста выпуска оборудования
(13)
причем – прирост выпуска этого оборудования за промежуток времени , а y – уровень его производства за единицу времени на момент времени t. Найдем общее количество оборудования, произведенного к моменту времени t, полагая, что K – известная постоянная величина (единицей времени является год) и в начальный момент времени t=0 уровень ежегодного производства оборудования составлял .
Решение. Будем считать, что y является непрерывной функцией от времени t. Перейдем к пределу при в равенстве (13):
Интегрируем это равенство в пределах от 0 до t , получаем
откуда
Суммарное количество оборудования, выпущенного за промежуток времени t, находится по формуле
Например, при K=0,05 (5% ежегодного темпа роста) общее количество оборудования, выпущенного за 10 лет, составит
Причем уровень производства за указанный период времени увеличится почти на 65% .
- GfВведение в математический анализ План
- Множества
- Операции над множествами
- Понятие функции, ее области определения и множества значений. Способы задания функции
- Основные свойства функции
- Понятие обратной функции
- Понятие сложной функции
- Применение функций в экономике
- Числовые последовательности
- Предел последовательности
- Число е, применение в экономике
- Предел функции
- Замечательные пределы
- Бесконечно малые, бесконечно большие функции
- Классификация бесконечно малых
- Односторонние пределы функции
- Непрерывность функции, классификация точек разрыва
- Основы дифференциального исчисления функции одной переменной План
- Определение производной
- Геометрический и физический смысл производной
- Связь между непрерывностью и дифференцируемостью функции
- Правила дифференцирования функций
- Дифференцирование сложной, обратной функций
- Производная неявной и параметрически заданной функций
- Определение и геометрический смысл дифференциала
- Производные высших порядков явно заданной функции
- Производные высших порядков неявно заданной функции
- Производные высших порядков параметрически заданной функции
- Дифференциалы высших порядков
- Основные теоремы дифференциального исчисления
- Раскрытие неопределенностей с помощью правила Лопиталя
- Формула Тейлора
- Разложение по формуле Маклорена некоторых элементарных функций
- Исследование функций с помощью производных Условия возрастания и убывания функции
- Понятие экстремума
- Выпуклость графика функции. Точки перегиба
- Асимптоты графика функции
- Применение производных в экономике
- Функция нескольких переменных План
- Определение функции нескольких переменных. Область определения
- Линии уровня
- Предел функции нескольких переменных
- Непрерывность функции нескольких переменных
- Частные производные первого и высших порядков
- Полный дифференциал и его применение при приближенных вычислениях
- Дифференциалы высших порядков
- Производная по направлению, градиент функции
- Экстремум функции нескольких переменных
- Наибольшее и наименьшее значения функции нескольких переменных в замкнутой области
- Условный экстремум. Метод множителей Лагранжа
- Метод наименьших квадратов
- Основы интегрального исчисления План
- Первообразная функции и неопределенный интеграл
- Основные свойства неопределенного интеграла
- Основные методы интегрирования
- Рациональные дроби
- Интегрирование простейших рациональных дробей
- Интегрирование рациональных дробей
- Интегрирование тригонометрический функций
- Интегрирование некоторых иррациональных функций
- Интегралы, не выражающиеся через элементарные функции
- Определенный интеграл
- Основные свойства определенного интеграла
- Определенный интеграл с переменным верхним пределом
- Формула Ньютона – Лейбница
- Основные методы вычисления определенного интеграла
- Геометрические приложения определенного интеграла
- Некоторые приложения определенного интеграла в экономике
- Несобственные интегралы
- Дифференциальные уравнения План
- Общие сведения о дифференциальных уравнениях
- Дифференциальные уравнения первого порядка (общие понятия)
- Уравнения с разделяющимися переменными
- Однородные дифференциальные уравнения
- Линейные уравнения. Уравнения я. Бернулли
- Дифференциальные уравнения второго порядка (основные понятия)
- Уравнения, допускающие понижение порядка
- Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
- Линейные однородные уравнения второго порядка
- Неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами
- Применение дифференциальных уравнений в задачах экономики
- Числовые и функциональные ряды План
- Основные понятия. Сходимость ряда
- Необходимый признак сходимости
- Достаточные признаки сходимости рядов с положительными членами
- Знакочередующиеся ряды. Признак Лейбница
- Знакопеременные ряды. Общий достаточный признак сходимости знакопеременных рядов
- Функциональные ряды. Степенные ряды. Сходимость степенных рядов
- Ряды Тейлора и Маклорена