Несобственные интегралы
При введении понятия определенного интеграла предполагалось, что выполняются следующие условия: 1) пределы интегрирования a и b являются конечными; 2) подынтегральная функция f(x) на отрезке [a, b] непрерывна или имеет конечное число точек разрыва первого рода. В этом случае определенные интегралы называются собственными. Если хотя бы одно из указанных условий не выполняется, то интегралы называются несобственными. При этом определение определенного интеграла (5) теряет смысл.
Несобственные интегралы с бесконечными пределами интегрирования (первого рода).
Определение 6. Несобственным интегралом с бесконечным верхним пределом интегрирования от непрерывной функции f(x) на промежутке называется предел . Обозначается .
Таким образом,
=. (14)
Аналогично определяется несобственный интеграл с бесконечным нижним пределом интегрирования от непрерывной функции f(x) на промежутке :
=. (15)
Если пределы в правых частях формул (14), (15) существуют и конечны, то соответствующие несобственные интегралы называются сходящимися, если не существуют или бесконечны, – то расходящимися.
Аналогично вводится несобственный интеграл с двумя бесконечными пределами интегрирования от непрерывной функции f(x) на промежутке :
(16)
Интеграл (16) называется сходящимся, если оба предела существуют и конечны. Если хотя бы один из пределов не существует или бесконечен, то несобственный интеграл называется расходящимся.
Интегралы (14) – (16) называются также несобственными интегралами первого рода.
С геометрической точки зрения сходящийся несобственный интеграл означает, что фигура ограниченная кривой , прямыми x=a, y=0 и бесконечно вытянутая вдоль оси Ox, имеет конечную площадь S. Аналогичная геометрическая интерпретация имеет место для сходящихся несобственных интегралов (15) и (16).
Несобственный интеграл от неограниченных функций (второго рода).
Пусть функция неограниченна на конечном промежутке , причем .
Определение 7. Несобственным интегралом от функции f(x) непрерывной на промежутке и имеющей бесконечный разрыв в точке x=b, или несобственным интегралом второго рода называется предел интеграла при :
(17)
Аналогично если функция f(x) имеет бесконечный разрыв в точке x=a, то полагают
(18)
Если же функция f(x) имеет разрыв второго рода в некоторой точке , то
(19)
Если пределы в правых частях формул (17) – (19) существуют и конечны, то соответствующие несобственные интегралы от разрывной функции в точках a, b, и с называются сходящимися, в противном случае – то расходящимися.
С геометрической точки зрения сходящийся несобственный интеграл второго рода означает, что фигура ограниченная кривой , прямыми x=a, x=b и бесконечно вытянутая вдоль оси Oy при , имеет конечную площадь S.
- GfВведение в математический анализ План
- Множества
- Операции над множествами
- Понятие функции, ее области определения и множества значений. Способы задания функции
- Основные свойства функции
- Понятие обратной функции
- Понятие сложной функции
- Применение функций в экономике
- Числовые последовательности
- Предел последовательности
- Число е, применение в экономике
- Предел функции
- Замечательные пределы
- Бесконечно малые, бесконечно большие функции
- Классификация бесконечно малых
- Односторонние пределы функции
- Непрерывность функции, классификация точек разрыва
- Основы дифференциального исчисления функции одной переменной План
- Определение производной
- Геометрический и физический смысл производной
- Связь между непрерывностью и дифференцируемостью функции
- Правила дифференцирования функций
- Дифференцирование сложной, обратной функций
- Производная неявной и параметрически заданной функций
- Определение и геометрический смысл дифференциала
- Производные высших порядков явно заданной функции
- Производные высших порядков неявно заданной функции
- Производные высших порядков параметрически заданной функции
- Дифференциалы высших порядков
- Основные теоремы дифференциального исчисления
- Раскрытие неопределенностей с помощью правила Лопиталя
- Формула Тейлора
- Разложение по формуле Маклорена некоторых элементарных функций
- Исследование функций с помощью производных Условия возрастания и убывания функции
- Понятие экстремума
- Выпуклость графика функции. Точки перегиба
- Асимптоты графика функции
- Применение производных в экономике
- Функция нескольких переменных План
- Определение функции нескольких переменных. Область определения
- Линии уровня
- Предел функции нескольких переменных
- Непрерывность функции нескольких переменных
- Частные производные первого и высших порядков
- Полный дифференциал и его применение при приближенных вычислениях
- Дифференциалы высших порядков
- Производная по направлению, градиент функции
- Экстремум функции нескольких переменных
- Наибольшее и наименьшее значения функции нескольких переменных в замкнутой области
- Условный экстремум. Метод множителей Лагранжа
- Метод наименьших квадратов
- Основы интегрального исчисления План
- Первообразная функции и неопределенный интеграл
- Основные свойства неопределенного интеграла
- Основные методы интегрирования
- Рациональные дроби
- Интегрирование простейших рациональных дробей
- Интегрирование рациональных дробей
- Интегрирование тригонометрический функций
- Интегрирование некоторых иррациональных функций
- Интегралы, не выражающиеся через элементарные функции
- Определенный интеграл
- Основные свойства определенного интеграла
- Определенный интеграл с переменным верхним пределом
- Формула Ньютона – Лейбница
- Основные методы вычисления определенного интеграла
- Геометрические приложения определенного интеграла
- Некоторые приложения определенного интеграла в экономике
- Несобственные интегралы
- Дифференциальные уравнения План
- Общие сведения о дифференциальных уравнениях
- Дифференциальные уравнения первого порядка (общие понятия)
- Уравнения с разделяющимися переменными
- Однородные дифференциальные уравнения
- Линейные уравнения. Уравнения я. Бернулли
- Дифференциальные уравнения второго порядка (основные понятия)
- Уравнения, допускающие понижение порядка
- Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
- Линейные однородные уравнения второго порядка
- Неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами
- Применение дифференциальных уравнений в задачах экономики
- Числовые и функциональные ряды План
- Основные понятия. Сходимость ряда
- Необходимый признак сходимости
- Достаточные признаки сходимости рядов с положительными членами
- Знакочередующиеся ряды. Признак Лейбница
- Знакопеременные ряды. Общий достаточный признак сходимости знакопеременных рядов
- Функциональные ряды. Степенные ряды. Сходимость степенных рядов
- Ряды Тейлора и Маклорена